
2 01003758 7

AD-AOA* /36

TECHNICAL
, LIBRARY

FORTRAN IV Compiler-Loader

for the Wang 520/600 Calculator

March 1976

ex

U.S. Army Materiel Command

HARRY DIAMOND LABORATORIES

Adelphi, Maryland 20783

APPROVED FOR PUBLC RELEASE; DISTRIBUTION UNLIMITED.

The findings in this report are not
to be construed as an official Department
of the Army position unless so designated
by other authorized documents.

Citation of manufacturers* or trade
names does not constitute an official in-
dorsement or approval of the use thereof.

Destroy this report when it is no
longer needed. Do not return it to the
originator.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (»hon Dot* Bniorod)

REPORT DOCUMENTATION PAGE
1. REPORT NUMBER

HDL-TM-7 3-15S

READ INSTRUCTIONS
BEFORE COMPLETING FORM

12. 30VT ACCESSION NO. ». RECIPIENT'S CATALOG NUMBER

[4. TITLE (and Subtltim)

FORTRAN IV Compiler-Loader for the
Wang 520/600 Calculator

S. TYRE OF REPORT S PERIOD COVERED

Technical Memorandum
S. PERFORMING ORO. REPORT NUMBER

7. AUTHOR/4)

Howard M. Bloom
Arthur Hausner
Robert J. Kushlis

B. CONTRACT OR GRANT NUMBER/«;

'». PERFORMING ORGANIZATION NAME AND ADDRESS

Harry Diamond Laboratories
2 800 Powder Mill Road
Adelphi, MD 20783

10. PROGRAM ELEMENT. PROJECT. TASK
AREA * WORK UNIT NUMBERS

II. CONTROLLING OFFICE NAME AND ADDRESS It. REPORT DATE

March 1976
IS. NUMBER OF PACKS

14. MONITORING AGENCY NAME * ADDRESS«/ dIMotmt ham Contrail** OMeo) «S. SECURITY CLASS, (ol OUa r-port;

|llnr;1fl.s.si f jpri «s DECL ASSI FC ATI ON/ DOWNGRADING
SCHED EDULE

IS. DISTRIBUTION STATEMENT (ol 95 RSpWQ

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of th. obitroct onlorod In Block 20, II dllforont from Rmpo€i)

IB. SUPPLEMENTARY NOTES

HDL Project: Y98CY3, 398C39

IS. KEY WORDS (Continue on NWM alda It nocaaamy and Idontlty or Mac* nmmbor)

Programmable calculator Translation optimization
Compiler
Loader
Language translation
FORTRAN translation

ISO. ABSTRACT (ComUmuo on tovot— •!<#• // MCMMT and IdaaMfy by block mmmb+t)

This paper describes a compiler system that will translate
IFORTRAN IV programs into programs that will run on the Wang 520/600
■programmable calculator. The system includes an option to generate
the Wang programs on punched cards that can be input into the 520
lor 600 via a mark-sense card reader.

DO, JAM7S 1473 EDITION OF 1 NOV SS IS OBSOLETE

1

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Whom Of. MmtormQ

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(TWi«n Dmtm Entered)

The compiler was written in FORTRAN IV for the IBM 370/195
computer. Only a few minor changes are necessary to run the system
on a different computer.

The paper includes a detailed description on the types of
optimization used to yield an effective FORTRAN translation onto a
relatively small computer (i.e., desk calculator).

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGEfH7i*n Dmtm Entered)

CONTENTS

Page

1. INTRODUCTION 5

2. USING THE SYSTEM 5

2.1 Compiler-Loader Operating System 7

2.2 Control Card Examples 9

2.3 FORTRAN Implementation and Limitation 10

2.4 User-Supplied Compiler Commands 12

3. DESCRIPTION OF SYSTEM STRUCTURE 15

3.1 Encoder 15

3.2 Parser 15

3.3 Automatic Register Assigner (AUTO) 17

3.4 Translator 18

3.5 Optimizer 18

3.6 Loader 18

4. CHANGES IN ALGORITHMS 19

5. NEW OPTIMIZATION FEATURES 20

5.1 Register Optimization 21

5.1.1 Definitions 22

5.1.2 Register Assignment 25

5.1.3 Example: Use of Auxiliary Registers 29

5.1.4 Program Execution 31

5.2 Additions to the Optimizer Subsystem 32

6. EXAMPLE 37

LITERATURE CITED 64

APPENDIX A.—Adaptability of System to Other Computers 65

DISTRIBUTION 67

CONTENTS (CONT'D)

FIGURES Page

1 Configuration of translator scheme 25

2 Sample program listing 30

3 Register table 31

4 Wang code listing 32

5 Program illustrating use of COMPILE statements 39

6 Name table for program MAIN 40

7 Wang relative code for program MAIN 41

8 Reference table for program MAIN 42

9 Program listing for POLRT 42

10 Name table for POLRT 45

11 Wang code for POLRT 46

12 Reference table for POLRT 52

13 Storage map for MAIN and POLRT 53

14 Final Wang code listing 55

15 Entry point and register information 62

TABLES

I Operating System Commands 8

II FORTRAN Program Statements Requiring Editing 11

III Set of FORTRAN IV Capability Restrictions 12

IV User-Supplied Compiler Commands 13

V Changes in Logical Code 19

VI Adoption of Optimization Tricks 21

1. INTRODUCTION

In July 1973, a FORTRAN compiler system1 was announced that
translated FORTRAN IV programs into Wang 520 calculator code. This
system was developed on the Tym-Share Incorporated system. The output
consisted of a listing of the translated Wang programs along with
special tables needed by the user later for loading the program into the
calculator.

A new compiler system is described here that contains the original
system as a subset, but is written in FORTRAN IV instead of SUPER
FORTRAN. The following characteristics describe the changes in the old
system:

(a) Loader—A loading phase has been added that will produce a
binary card deck as an output of the system. This deck can then be
read, via a mark-sense card reader, into the Wang 520 calculator.

(b) Algorithm Changes—Several changes that have been made in the
algorithms cited in the original paper either remove ambiguities or
improve code translation.

(c) New Optimization—Special attention has been placed upon the
availability of the 16 basic registers to further optimize the code
space. Also, many additions have been made to the second-pass
optimizer, with special consideration to the optimization of array code
generation.

(d) Adaptability—Because the system is now written in FORTRAN IV,
it should be easily adaptable to computers other than the IBM 360/370
series on which it is presently stored.

The following sections describe how the new improved system is used
and give a more detailed account of the added characteristics.

2. USING THE SYSTEM

The compiler-loader system has been implemented on an IBM 370/195
computer, accessible at Harry Diamond Laboratories (HDL) through the
IBM 1130 remote batch terminal. The following JCL statements are
necessary to execute the Wang 520 compiler-loader system:

1H. Bloom and A. Hausner, FORTRAN IV Compiler for the Wang 520
Calculator, Harry Diamond Laboratories TM-73-15 (July 1973)

JOB CARD
ACCOUNT CARD

//JOBLIB DD DSN=C753.WANG,DISP=(OLD,KEEP)
// EXEC PGM=COMPILER,REGION=280K
//FT01F001 DD DSN=SCRATCH,DISP=(NEW,DELETE),UNIT=SASCR,
// SPACE=(1872,(133,5)),DCB=(RECFM=VS,LRECL=1868,BLKSIZE=1872,DSORG=DA)
//FT06F001 DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=1596)
//FT07F001 DD SYSOUT=B
//FT05F001 DD *

Compiler-loader input
/*

The system output consists of the program source and object listings
and special system tables, some of which have already been
described.1 If the loader has been used, object programs are punched.
However, since the terminal currently in use receives card images that
contain only the 256 EBCDIC characters, the punched output is not in a
form directly readable into the Wang 520. A program has been
implemented on the IBM 1130 to convert the object decks to the Wang 520
card format that is acceptable to the mark-sense reader. The following
deck should be submitted for local (IBM 1130) execution for obtaining
the card conversion:

Col 1 4 8 11 51
// JOB 1210 your name
// BPNCH

cards from loader

blank Wang cards (same amount)

Each set of FORTRAN and Wang routines that should be loaded together
is called a "load group." The punched output of the compiler-loader
consists of a leader card with the number of cards (in hexadecimal
format) in the object deck in columns 1 and 2. The object deck follows,
with 40 steps punched on each card, also in hexadecimal format. The
above sequence is repeated for each load group. Hence, in loading the
compiler-loader system, sufficient blank cards should be added behind
the system deck to take care of all the cards to be punched.

lH. Bloom and A. Hausner, FORTRAN IV Compiler for the Wang 520
Calculator, Harry Diamond Laboratories TM-73-15 (July 1973).

The Wang cards punched correspond one to one to the cards punched by
the loader, so the number of Wang cards required is the same as the
number of cards put into the program. A maximum of 500 cards may be
converted at one time.

2.1 Compiler-Loader Operating System

The compiler-loader represents a very simple operating system
for which the user can run the program by using the set of five system
operations (table I).

The general deck setup is

(a) *WANG card(s) for each external Wang program included in a
load group,

(b) *FTC card(s) preceding each FORTRAN program deck included
in a load group,

(c) *LDR card(s) for load group,

(d) *END.

(e) Repeat steps (a) to (d) for any additional load groups.

(f) *STOP (always the last card in the deck).

FORTRAN Program Compilation.—Every FORTRAN main program or
subroutine must be preceded by the *FTC control card (see table I). The
options NOLIST and NOMAP are used to limit the amount of printed output.
The option AUTO is used to take advantage of the availability of free
registers in a given program (see sect. 5.1.2(d)). The previous options
need not be specified.

External Program Definition.—The *WANG card allows already
existing Wang 520 programs to be combined with FORTRAN programs into one
final loaded program. It is assumed that the name specified in the NAME
field has been referenced by a FORTRAN program. All the options are
used to avoid conflicts with marks and register numbers used by other
programs included in the same load group. Hence, all marks and nonbasic
registers used by the external program must be included. If the mark or
nonbasic register range used by the program is not one definable
sequence, the particular option can be repeated as often as necessary to
describe all the sequences actually used. If more than one card is
needed for a given external program, additional *WANG cards can be added
with the NAME field blank.

TABLE I. OPERATING SYSTEM COMMANDS

Operation Use

(1) FTC FORTRAN program compilation

Options:

(a) NOLIST—source program listing not printed

(b) NOMAP—Name table, translation, and reference

table not printed

(c) AUTO (nn-mm)—free registers in range nn-mm
are assigned to most frequently referenced

variables (if nn-mm is not specified (i.e.,

AUTO), range 01-15 is used)

Program name

required

Yes

(2) WANG External program definition

Options (all must be specified to prevent

conflicts):

(a) Ennnn--mark number of entry point to pro-

gram (must be specified)

(b) Snnnn—number of program steps, not
including END PROG (if specified, storage

is allocated for program before compiled

programs)

(c) Mnnnn-mmmm—Mnnnn is mark number used by pro-
gram (if -mmmm is specified, entire range is
excluded by loader)

(d) Rnnn-mmm—Rnnn is nonbasic register number
used by program (if-mmm is specified,

entire range is excluded by loader)

Yes

Optional (3) LDR Assigns storage and marks to compiled programs and
satisfies external references between programs

Options:

(a) Mnnnn—starting mark number (if not specified,

first available mark is used)

(b) Rnnn—starting nonbasic register number (if not

specified, first available number is used)

(c) Ennn—entry point mark number (if not specified,

first available entry point number is used)

(4) END End of load group

(5) STOP End of compiler input

General Form

Col 1 col 2-5 Col 8-13 Col 16-71

OP NAME OPT., OPT., . . ., OPT
12 n

where OP is the operation, NAME is a program name, and OPT. are option fields, which

may appear in any order.

No

No

Program Loading.—The *LDR card is used to assign storage and
marks to compiler programs and satisfy external references between
programs. If NAME is specified, it must have appeared previously on an
*FTC card. If NAME is blank, all programs compiled or declared external
since the last *END card are loaded. If one of a load group is named on
an *LDR card, each program must have a separate *LDR card with the name
used on the corresponding *FTC card. None of the options need be
specified.

End of a Load Group.—The *END card marks the end of a group of
programs to be loaded together. Whenever the loader is used, an *END
card must follow the *LDR card(s), to complete the loading process.
There may be several load groups in one job, each terminated by an *END
card.

End of Compiler Input.—The *STOP card is used at the end of
all compiler-loader input to halt execution of the system.

2.2 Control Card Examples

(a) Compile a single program and do not load. All listings are
desired.

*FTC MAIN
(FORTRAN deck)

*END
*STOP

(b) Compile and load subroutines A and B. Do not get listings
of the translation; specify automatic register allocation for A. In the
same job, compile and load subroutine C with external program D.
Program D uses marks 0003 and 0010-0103 and registers 016-047; its entry
point is 1010, and it uses 156 steps.

*FTC A NOMAP, AUTO
(subroutine A deck)

*FTC B NOMAP
(subroutine B deck)

*LDR
♦END
*WANG D E1010, S0156, M0003, M0010-0103, R016-047
*FTC C
(subroutine C deck)

*LDR
*END
*ST0P

(c) Compile and load program INTG. Registers 03-07 are to be
used for automatic register allocation. No source listing is desired.
The loaded program uses marks beginning with 1200 and registers
beginning with 032. The entry point for INTG is 1104.

*FTC INTG AUTO(03-07), NOLIST
(FORTRAN deck)

*LDR M1200, R032, E1104
*END
*STOP

(d) Compile and load programs FTC and DERIV together.
Program FTC should use marks beginning at 0800 and registers beginning
at 025. Program DERIV uses marks starting at 0900 and registers
beginning at 025. Even though the starting register number is the same,
the loader does not assign the same registers to both programs. The
first register used by DERIV is the first register after 25 not used by
FCT.

*FTC FCT
(FORTRAN deck)

*FTC DERIV
(FORTRAN deck)

*LDR FCT M0800, R025
*LDR DERIV M0900, R025
*END
*STOP

2.3 FORTRAN Implementation and Limitation

system
The
has

FORTRAN IV subset implemented by the Wang compiler-loader
been completely described.1 To make this report as

self-sufficient as possible, a general list of unimplemented FORTRAN IV
capabilities is reported here (table II).

1H. Bloom and A. Hausner, FORTRAN TV Compiler for the Wang 520
Calculator, Harry Diamond Laboratories TM-73-15 (July 1973), section 2.
Changes in the restrictions are noted in section 4 of TM-73-15S.

10

TABLE II. FORTRAN PROGRAM STATEMENTS REQUIRINT EDITING 1

Subroutines Not implemented Not implemented Must be followed by
not provided and ignored with error result at least one blank

OVERFL(J) ENDFILE ASSIGN N TO I DIMENSION
DVCHK(J) PUNCF BLOCK DATA COMMON
SSWTCH(I,J) PRINT COMPLEX INTEGER
SLITET(I) REWIND DATA REAL
ERF(X) NAMELIST ENTRY DOUBLE
GAMMA (X) BACKSPACE CALL EXIT PRECISION
ALGAMA(X) FORMAT EXTERNAL LOGICAL
CEXP(X) GOTO I, (Nl,..., SUBROUTINE
CLOG(X) Machine-dependent MM) CALL
CSIN(X) functions ignored RETURN I(I not FUNCTION
CCOS(X) AND(X,Y) blank)
CABS(X) OR(X,Y) Arithmetic State-
CSORT(X) COMPL(X) ment Function
CMPLX(X1,X2) BOOL(X)
CONJG(X)
AIMAG(X)
REAL(X)
DUMP(A ,B ,...)
PDUMP
(A ,B ,...)

Special cases:

(a) Function names not allowed as arguments of a subroutine or function
subprogram. Subscripted variables allowed when not outputs. Minimum of
1 and maximum of 15 arguments. Function nesting limited to 5.

(b) Values of DO indices are not available outside of the loop.

(c) Variables, constants, reserve words, or special operators cannot be
continued on the next line.

lFrom H. Bloom and A. Hausner, Harry Diamond Laboratories TM-73-15.

In general, all the important facilities in FORTRAN IV have
been implemented; perhaps the only two deficiencies are no complex
arithmetic and only single-dimension arrays. However, these
restrictions are sensible when the computer being used has the limited
size of a Wang 520. Table III summarizes the specific restrictions.

11

TABLE III. SET OF FORTRAN IV CAPABILITY RESTRICTIONS1

(1) Complex constants are not allowed.

(2) Arrays can be only one dimensional.

(3) Trigonometric functions arguments such as SIN have a magnitude

restriction of 10 radians.

(4) Computed GOTO has a limit of 20 statement numbers. If the
index is out of range, the default is to the last number.

(5) The DO index value is not available outside the DO loop. The

maximum DO nest level is 5.

(6) The "n" in PAUSE or STOP may be only a single decimal digit.

(7) Maximum and minimum built-in functions can have two arguments

only.

(8) User-defined subprograms do not supersede system routine
names.

(9) Variable dimensions are not allowed.

(10) Only one labeled COMMON can appear on a given COMMON card.

Summarized from H. Bloom and A. "Hausner, Harry Diamond Laboratories
TM-73-15, section 2.

The compiler-loader system assumes that the FORTRAN decks
submitted are free of syntax errors and thus does not perform any degree
of syntax checking itself. Therefore, it is possible for a run to fail,
and the computer will list an error that is completely meaningless to
the user. In this case, the user should satisfy himself that his decks
are running programs.

2.4 User-Supplied Compiler Commands

As described in detail previously,1 the system allows the user
to include special compiler commands (table IV) to improve his code, if
he desires. These commands appear directly in the FORTRAN deck and are
entered as special comments. The commands T, R, and S are used for
register optimization. Since the automatic register assigner subsystem
(AUTO, sect. 3.3) was added, there is little need for the user to assign
variables to basic registers. However, the option is available and does

lH. Bloom and A. Hausner, FORTRAN IV Compiler for the Wang 520
Calculator, Harry Diamond Laboratories TM-73-15 (July 1973}.

12

TABLE IV. USER-SUPPLIED COMPILER COMMANDS

Command Effect

1. T Z

(Top assigning)

2. R N(VX V)
(Equivalencing)

3. S name(C ,...,C) ,
d, R1-R27 $Z m

(Subprogram

specification)

The top register in the program is changed
from 15 to Z (<15) .

The FORTRAN variables x""tVm are a11

assigned the same basic register N(00<.N_<15) .

(a) "name" is the name of a subprogram to be
called as name(a„,...,a).

0 m

(b) C^ is a special symbol that determines
that property of the corresponding actual
subprogram call argument as follows:

C.=B;argument a. is both an input and
output variable (a. must be
nonsubscripted).

I;argument a. is input expression
only.

0;(letter 0) argument a. is output
variable only. (a* must be
nonsubscripted).

(a1
1

E;argument a. is empty variable, i.e.,
neither input nor output.

(c) d is the maximum number of nested DC
indices in "name." If d is omitted, all
necessary DO indices of the calling
program will be saved and restored.

(d) R1-R2 is the range of basic registers to
be saved in the calling program. If
Rl=R2=0, no registers are saved. If the
range is omitted, all variables assigned
to basic registers in the calling program
will be saved and restored.

(e) Z is the top register specified in a T
statement in "name." If $Z is omitted,
Z=15.

(f) d, R1-R2, and $Z fields may be listed in
any order.

1 From H. Bloom and A. Hausner, Harry Diamond Laboratories TM-73-15
(July 1973)

13

TABLE IV. USER-SUPPLIED COMPILER COMMANDS1 (CONT'D)

Command Effect

4. W V(format, N, M)
(I/O specification)

(a) V is the name of a FORTRAN variable.

(b) Format is any four digit allowable Wang
format that can follow the PRINT step
(table 33 of HDL-TM-73-15).

(c) N is the print-on-read indicator.

N = 0; do not print input on READ.
N = 1; print input on READ.

(d) M is the spacing indicator.

M = 0; no spaces.
M - 1; space before printout.
M = 2; space after printout.
M = 3; space before and after printout.

(e) If N = 0, M is ignored on a READ.

(f) If format is 0015, N and M are used with
the previously defined default format

(table 19 of HDL-TM-73-15).

(a) All commands must start with COMPILE in columns 1-7.

(b) Card commands cannot be continued on next line.

(c) Only one S command can appear for each "name."

(d) Any FORTRAN variable can appear in at most one R command.

(e) Subprogram arguments cannot appear in an R command.

(f) Only one register can be specified in one R command.

From H. Bloom and A. Hausner, Harry Diamond Laboratories TM-73-15
(July 1973)

14

allow for the most efficiently generated code. The command T is usually
used with respect to the command S, in order to line up arguments in the
called routine with the argument register storage in the calling
routine. The S command is mainly designed to minimize the amount of
code that must be generated each time a call is translated. Examples of
ways that the R, S, and T commands can be used have been given earlier.

Since format statements are not implemented in this system, the
W command allows the user to make full use of the I/O capabilities of
the Wang 520 printer. Hence, whenever a variable is referenced in an
I/O statement, the indicated W format is used in the translation, if it
exists.

3. DESCRIPTION OF SYSTEM STRUCTURE

The compiler is divided into six subsystems: (1) encoder, (2)
parser, (3) automatic register assigner, (4) translator, (5) optimizer,
and (6) loader. A brief description of each system is given below.

3.1 Encoder

The encoder takes the FORTRAN program string code and generates
an encoded program string. It performs the following special features:

(a) Generates special operator code (for example, X , 1/X, II,
power of 10 shifts) to take advantage of the Wang operator set.

(b) Sets up COMPILE option tables.

(c) Eliminates FORTRAN formats from code and removes format
number and device index from I/O statement.

(d) Removes commands not allowed in version.

(e) Generates special end-of-DO (CONTINUE) statement with new
label that also replaces the DO statement label. This is a new feature
that eliminates ambiguities in the pretranslation of a FORTRAN statement
into a multiline code (i.e., for I/O, certain LOGICAL IF and function
calls).

3.2 Parser

The parser takes the encoded string and generates a reverse
Polish string. It performs the following special features:

lH. Bloom and A. Hausner, FORTRAN IV Compiler for the Wang 520
Calculator, Harry Diamond Laboratories TM-73-15 (July 1973), table 12,
section 3.2.1.

15

(a) Reorders expressions having a commutative binary operator
(+, *, .AND., .EQ., .OR., .NE.), if there is a reduction in the number
of registers needed to compute the expression. The new algorithm
replaces the one mentioned previously1 in that it simply checks the
expression with the arguments in either position to determine the best
ordering.

(b) Reorders commutative expressions, provided there is no
change in the number of registers under the following conditions (in
order of priority):

(1) Reorders the assignment expression so that a variable
assigned in the previous statement is closest to the left of the present
expression. Doing so allows the recall suppression feature to be more
effective; for example, statements k = 1, I = J +K will be
pretranslated as K = 1, I=K+J.

(2) Reorders
consecutive operators "-
B becomes X = B - A.

unary

the expression
• + with

binary

to replace the two
'; for example, X = - A +

(c) Defines code for (F, (A, and (M to indicate the end of a
function, array, and macro argument list, respectively.

(d) Checks LOGICAL IF statement for function or I/O statement
expansion candidates. If expansion is required, the statement is
altered. For example,

becomes

where

IF(X. EQ.l) Y(I) = F(X)

IF(X. EQ.l) GOTO LI

GO TO L2

LI Y(I) = F(X)

L2 next statement

LI and L2 are system-generated labels.

!/?. Bloom and A. Hausner, FORTRAN IV Compiler for the Wang 520
Calculator, Harry Diamond Laboratories TM-73-15 (July 1973), table 12,
section 3.2.1.

16

(e) Stores equivalence and common statements into system
tables.

(f) Checks for function or I/O expansion. If the statement has
a label, the label goes with the first statement in the expansion. For
example,

10 Y(I) = F(X) becomes 10 T.00 = F(X)

Y(I) = T.00

10 READ () X, Y becomes 10 READ () X

READ () Y

(g) Defines the array repeat operator A if assignment array
appears on the right side of the assignment. For example,

X(I) = X(I) + B/X(I)

becomes

X(I) = AR + B/AR

(h) Looks for the pattern "expression * expression" (appearing
in FORTRAN format) and replaces it with (expression)**2.

(i) Looks for the pattern ++ or ** (appearing in reverse
Polish). If it is found, the second operand of the first operator is
switched with the operator. For example,

the FORTRAN (A + B) + (C* D), first in Polish (AB+CD*+),

and then (CD*AB++) after reordering becomes

the FORTRAN ((C * D) + A) + B, or in Polish (CD*A+B+).

3.3 Automatic Register Assigner (AUTO)

The AUTO system assigns auxiliary registers (i.e., work
registers, DO index registers, and register 00) to common subexpressions
and temporary variables and free registers to other variables if so
specified. The discussion of register optimization is very important
and is handled specially in section 5.1. This system is new to the
translator, but the system can greatly reduce the program size by trying
to optimize the use of the basic registers.

17

3.4 Translator

The translator takes the parsed string and generates the
relocatable Wang code. There are many local optimization features
performed at this point.

The techniques used in translating each type of FORTRAN
statement into corresponding Wang Code have been described1 in
detail. Even if the compiler-loader system is not used, it is
worthwhile to learn the translation algorithms and apply them when
writing the Wang code, especially in the case of conditional transfers
and DO loops. The original report also describes the basic translator
scheme for setting up the calculator as a computer structure and use of
the registers in implementing the translation algorithms.

3.5 Optimizer

The optimizer (or second-pass optimizer) takes the relocatable
Wang code generated by the translator and searches for certain patterns,
in order to reduce the number of steps. The seven passes made through
the code have also been discussed.1 The current version of the
optimizer makes an additional eight passes to try to further reduce the
number of steps. These are fully discussed in section 5.2.

3.6 Loader

The loader combines the whole relocatable Wang code generated
from the FORTRAN programs with any externally defined Wang programs and
stores the whole code together in absolute form by use of the following
order:

(a) External Wang programs

(b) FORTRAN programs

(c) Large number storage in nonbasic registers

(d) Nonbasic variable register storage.

The loader outputs a set of punched cards representing the
object deck of a loaded program module (sect. 2).

lH. Bloom and A. Hausner, FORTRAN IV Compiler for the Wang 520
Calculator, Harry Diamond Laboratories TM-73-15 (July 1973), tables 15,
17. 18.

18

An optimization algorithm within the loader attempts to use the
same nonbasic registers for variables in different programs, if doing so
is possible. Variables (including arrays) that are candidates for
sharing a nonbasic register with a variable (or array) in another
program must obey the following property. Between the first and last
reference to the variable, there can be no call to another subprogram.
This restriction is necessary to keep the value of the assigned nonbasic
register from changing in the called subprogram and, hence, storing an
incorrect value for the variable used in the calling program.

4. CHANGES IN ALGORITHMS

Aside from many new features in the compiler system, there have been
many changes also in the algorithms already developed and described.

(a) The code generated from the nonbasic operators .LE., .LT.,
.GE., and .GT.1 has been shortened, and the code for the .EQ. and .NE.
simple LOGICAL IF statement has been changed, to avoid the use of
register 00. Table V shows the changes.

TABLE V. CHANGES IN LOGICAL CODE

.LE. .LT. • GE. .GT. IF (J.EQ.K) S IF (J.NE.K) S

- L - L - L - L recall J recall J
T L T L E 1 E 1 . ST L ST L
J IF 0 J IF 0 SP-ST L SP-ST L recall K recall K
E 0 J IF + J IF 0 J IF 0 - L - L
J IF + E 1 J IF + J IF + J NE 0 J IF 0
E 1 ST L T L GO translate S translate S
ST L RE L GO T L
RE L RE L RE L

(b) The code used for generating function expansion] has been
altered so that if a label appears in the original statement, this label
eventually appears in the first statement of the expansion.

lH. Bloom and A. Hausner, FORTRAN IV Compiler for the Wang 520
Calculator, Harry Diamond Laboratories TM-73-15 (July 1973).

19

(c) The code for generating DO loops1 has been altered. The
special DO label Lnn is now used as the label on the last statement of
the DO loop. (A special CONTINUE statement is added, see sect. 3.1(e).)
The combination of changes (b) and (c) removed the problem of not
allowing function calls to be in the last statement of a DO loop.

(d) The special DO label name generated is now D.nm.

(e) The system label generated is now LABnm.

(f) The system-created variable (ZZZZnm) is now T.nm.

(g) The subprogram save variable (AAAAnm) is now AAA.nm.

5. NEW OPTIMIZATION FEATURES

Since the development of the original compiler, the major change in
the new system (besides the loader phase) has been the concern for more
step optimization. The work lies in two major areas:

(a) maximum use of the basic registers

(b) recognition of repeatable patterns in the code so that copies
of the patterns can be eliminated (e.g., generation of the same array
element in two statements). The two types of optimization take place in
the AUTO and optimizer subsystems, respectively.

The user previously had to decide whether or not he needed
optimization tricks. They are now automatically performed by the
compiler (table VI).

1H. Bloom and A. Hausner, FORTRAN IV Compiler for the Wang 520
Calculator, Harry Diamond Laboratories TM-73-15 (July 1973).

20

TABLE VI. ADOPTION OF OPTIMIZATION TRICKS

Type
Section with
reference1

Using the basic registers
effectively

Arithemetic IF statements

DO index suppression

Low index (of DO) is an
expression

Register 00 is not used
(upper index is expression)

Recall array suppression

Transposing terms for recall
suppression

Transposing terms to lower
work register requirements

5.1 (6.2.1)

5.2 (6.2.2)

3.2-b-l (6.2.4-2)

5.1.2-b Case 2 (6.2.4-3)

5.1.2-b Case 3 (6.2.4-4)

5.1.2-a (6.2.5-1)

3.2-b-l (6.2.6-1)

3.2-a, 3.2-i (6.2.6^3)

Trailing zeros

Constant set

Decimal suppression

Squaring

ZZZZnn equivalencing

5.2 (6.2.7-1)

5.2 (6.2.7-2)

5.2 (6.2.7-4)

3.2-h (6.2.8-3)

5.1.2-c (6.2.8-4)

lSection number in parentheses is from HDL-TM-73-15.

5.1 Register Optimization

As mentioned in section 3.3, the most important resources in
the calculator are the 16 basic registers that play an important role in
the statement translation. Some of the optimization concepts were
obtained from Gries,2 Hopgood,3 and Rustin.4 However, it is important
also that some of the registers be used for storing the values of
variables. There are three very critical savings:

2D. Gries, Compiler Construction for Digital Computers, New York:
John Wiley and Sons (1971) .

3F. R. A. Hopgood, Compiling Techniques, New York: American Elsevier
Publishing Co. (1969).

*R. Rustin, ed., Design and Optimization of Compilers, Englewood
Cliffs, NJ: Prentice Hall, Inc. (1972).

21

(a) Since "nonbasic" registers are constructed by the
concatenation of eight program steps, these steps can be saved if the
variables can be stored in basic registers, instead.

(b) Many of the step optimization features (such as simple
updating) can be applied only if the varible is in a basic register.

(c) Execution time is saved, not only from the above types of
step savings, but also by the use of basic register store-recall rather
than "nonbasic" store-recall.

The goal of register optimization is to make use of the basic
registers when they are not being used in the ordinary statement
translation. Let

statement,

time,

M = the maximum number of work registers used in any one
w

M„ = the maximum number of DO index registers needed at any
d

LT - the first available work register,

W. = the number of work registers needed for statement i,

D. = the DO index level at statement i.
l

For statement i, the registers LT-W. through LT-M +1 and Md
through D.+l are free for some other use.1 In addition, register 00
might also be free. Hence, these registers can be used for storing the
values of variables at selected points in the program. In programs
where there is a large value for W. (such as 4) or D^ (such as 3),
register optimization can result in tremendous savings of space, since
these peak values occur infrequently in the program (for W., usually
once or twice). However, care must be taken in the choice of which
variables to use with which registers. The next section lists
definitions of terms needed in the description of the register
optimization that is performed by the compiler.

5.1.1 Definitions

(a) Auxilliary register—any register that at any time was
used as either a work register (i.e., for computing expressions) or a DO
index register. Register 00 is also considered auxiliary. These
registers are used at least once in the ordinary statement translation
described in section 3.4. An auxiliary register is considered available
in a given statement span if it has not been previously used in any
statement within the span.

22

(b) Free register—free registers F are those defined by
LT-M > F > M. These registers are never used in the ordinary
statement translation; hence, they are entirely free to be used for
variable register assignment.

(c) Variable domain—the span of statements from the first to
the last referencing the variable in the program. If the variable
appears outside a DO loop and its last reference is within the DO loop,
its domain is extended to include the entire DO loop.

(d) Common subexpression domain—the span of statements from
the first to the last that includes the subexpression. Within the span,
the following criteria must be satisfied:

(1) No statement labels except for the following special
case:

IF (arithmetic expression) LI, L2, L3

L. statement where i = 1, 2, or 3.

(This criterion is somewhat restrictive, but greatly
simplifies the pattern searching. Also, it eliminates the need to move
the expression backwards in the program to make certain that no jump can
occur over the first appearance of the expression.)

(2) No new assignment involving a variable used in the
expression

(3) No subprogram references.

(e) Closed block—a span of statements obeying the following
properties:

(1) No backward transfers

(2) No transfers from outside the block to within the
block

(3) DO loops may appear within a closed block

(4) No function or subroutine call can appear except as
the first statement of the closed block.

23

(Without properties (1) and (2), the span of the closed
block would be inefficiently expanded to include the whole range from
the transfer back to the label reference. Doing so would eliminate most
of the register optimization. Property (3) is included because of the
popular usage of the DO loop, which usually dominates every segment of
any program. Property (4) is necessary because the compiler does not
know what registers may be used in the subprogram; hence, it would have
to save all registers used up to that point and result in extra steps
generated by the save code.)

(f) Local domain of a variable—any span of statements that
references the variable and obeys the following properties:

(1) The first statement is an assignment to the variable
(not as a result of a LOGICAL IF). This cannot be an update (Y = f(Y)).

(2) All properties of a closed block must be obeyed.

(3) The span includes all references after the first
assignment that obey properties (1) and (2).

(The properties define a region in which a variable is
totally defined, since the first statement must be an absolute
assignment.)

(g) Temporary variable—a variable whose domain lies entirely
within a single closed block. In addition, the variable may not have
appeared in a COMMON, FUNCTION, SUBROUTINE, or EQUIVALENCE statement,
nor be an array name. A good example of a temporary variable is the
switch variable used for arrays:

TEMP = A(I), A(I) = A(I+1), A(I+1) = TEMP.

The variable TEMP has no real importance, except to be used as temporary
storage. Certainly, TEMP should be stored in a basic register, if
possible.

(h) Global variable—a variable whose domain includes one or
more closed blocks. These variables are usually heavily referenced
throughout the program; hence, they cannot fit within any defined
domain. However, it would be especially beneficial if basic registers
could be assigned them because of the step savings in the referencing.

(i) Local variable—A variable over whose domain exists one
or more local domains. The local variable obeys the properties of a
temporary variable. Local variables are, in most cases, special
examples of temporary variables. In general, the programmer has used

24

the name of a variable that is constantly used for temporary storage in
many places in the program. The local domain definition implies that
the variable is entirely defined within a small local region, just as in
the example given for the temporary variable—see (g) above. This local
definition may occur several times for the same variable in one program.

5.1.2 Register Assignment

As stated in section 3.3, auxiliary registers are assigned by
the system in its process of translating the FORTRAN statements. This
section is concerned with the assignment of registers for variables.
The system does assign registers to all arguments of a subprogram
(fig. 1). It can allow the programmer to specifically assign variables
to registers under program control (sect. 2.4). The system register
assignments are made in the following order:

Register (basic) number Register (nonbasic) number

(L)

00 SPECIAL WORK REGISTER

01
DO INDEX REGISTERS

D *
1

WORK REGISTERS

1 T k

A

ARGUMENTS

OF SUBROUTINES

T—15

16-

INT(I4%

DATA

MEMORY

PROGRAM

STORAGE

0

Step No.

Figure 1. Configuration of translator scheme.

25

(a) Assignment of common subexpressions—If auxiliary
registers are available, common subexpressions are assigned to them in
the following order. Let p = the number of occurrences times the
number of tokens (e.g., operators and operands) in an expression.
Hence, p is a rough estimate of the number of steps that can be saved by
replacing all occurrences of a common subexpression with a variable
reference and initially assigning the variable the value of the
expression. The expressions are considered in decreasing values of p.
The register used is no longer available in the entire expression
domain. If a common subexpression cannot be assigned a register, it is
ignored.

Common subexpression register assignment was chosen first

because the domain is so restrictive and huge savings of steps are
possible. Experience has shown that most subexpressions are array
elements (such as A(I+1)). In this compiler, it takes at least six
steps to generate an array element. Hence, if the element appears three
times, at least 9 steps can be saved (12 steps, less two extra recalls
and one store). Expressions are ignored if there are no free auxiliary
registers, since use of a temporary variable for storage requires the
generation of a nonbasic register that requires an additional eight
steps. Experience has shown, however, that a free auxiliary register is
almost always available.

(b) Assignment of a temporary variable—temporary variables
are assigned to auxiliary registers, if available, in the order of
decreasing frequency of references. The register used is no longer
available in the entire variable domain.

Approximately 20 percent of the variables in an average
program obey the definition of a temporary variable. However, only a
few of these variables have an auxiliary register available over their
domain, unless the domain is relatively small in its span.

In three special cases, the auxiliary register
availability definition can be overridden and provide even more
optimization. The cases follow:

Properties of Variables Considered Special Cases

(1) Exactly two references are in consecutive statements
(in the entire program).

(2) First reference is an assignment.

(3) Second reference is not in a labelled statement.

26

Cases

(1) Strictly temporary variable:

X=. . .

or

A=X. .

K=. . .

A(K)=. . .

Register LT is used for X if A is nonarray
and LT-1 is used if A is an array.

Register LT is used for K.

For this case, X (or K) would have been recalled and
then stored in LT anyway; instead, the values can be stored in LT
directly, even though LT is not available according to the definition.
Not only is a register saved, but also steps are saved.

(2) Low limit of DO loop:

Il=. . .
Use index register assigned to

DO. . . I = II, . . . j X for X1-

Case (2) occurs when the lower limit is an
expression. Since FORTRAN IV does not allow expressions as DO limits,
the programmer must resort to the use of a temporary variable. The
system essentially undoes this wasteful operation.

(3) Upper limit of DO loop:

12= . \
Use register 00 for 12
if it is available within

.o. . . ::=. . ., .2,. «the loop-

The system uses register 00 to store the contents of
the upper limit at the end of the DO loop in preparation for a transfer
check back to the beginning of the loop. As in case (2), the system
essentially allows the upper limit to be an expression.

(c) Assignment of local variables—local variables are
assigned to auxiliary-registers, if available, in the following order
(each is based on decreasing frequency of references): (1) variables
whose every reference is included within a local domain and (2)
variables for which at least one reference does not appear in a local
domain.

27

A distinction must be made between cases (C-l) and (C-2)
because the variable in case (C-l) is always redefined at the beginning
of a local domain. Hence, it makes no difference if the auxiliary
register used to store the variable value is reused for another purpose
between two local domains of the same variables. However, for
case (C-2), it is necessary to add a special store instruction each time
an assignment is made, so that a global value can be maintained for the
variable.

It is possible that a variable can be defined as a local
variable in many local domains. Hence, in one domain, the variable
could be assigned register 10 and in another domain, register 2. The
local variable register assignment is perhaps the most heavily used
portion of the entire register assignment algorithm, since the local
domains appear in such frequency and are, in general, extremely
restrictive in domain size. Cases (b-1), (b-2), and (b-3) for temporary
variables apply also for local variables. The register used is no
longer available in the entire local domain.

The following example should help to illustrate the
concept of local variable register assignment: Assume that X is
assigned registers 1 and 2 in each domain, Y is assigned register 2 in
its first domain, and Z is assigned register 8.

Code

X = 1 El

Y = X+l ST 1 E2

Z = Y+2 RE 1 E4

ST 2
STORE

Y
GO TO 20 El

• +2 MARK
•

Y = 4
STORE

Y
E220

ST LT
20 Y = 2+Y ST 8 RECALL

E 2 Y
+8 XLT

X = 2 SEARCH STORE
20 Y

ST2

28

The variable X satisfies case (c-1) since it is totally
defined within every domain where it appears. Hence, a register can be
simply substituted for X for each reference. However, Y appears as
case (c-2). Its first domain is local, but not the remaining
references. The programmer can substitute a register for Y in the
first domain, but this register may not be available at statement 20.
Hence, one must also save the value for Y in its general storage
location.

(d) Assignment of free register variable—the programmer can
specify that the free registers be used for variable assignment (AUTO
option, table I). They are allocated in order of decreasing frequency
of references to all variables not already assigned registers by the
system. Only one variable can be assigned to a given free register.

Since the compiler is designed to store arguments of
subroutines in basic registers, care must be taken in subprogram calls
to save the values of variables used for permanent storage in nonbasic
registers if they would be destroyed by the called program. Hence, the
best feature of the common-expression, temporary variable, and local
variable register assignment is that the values in the registers can be
destroyed when calls are made. However, if free registers are assigned,
their contents may have to be saved. The programmer does have control
in specifying which registers need be saved when the program calls a
given subprogram (command S, table IV).

5.1.3 Example; Use of Auxiliary Registers

The sample program of figure 2 illustrates the use of
auxiliary registers. A register map is given in figure 3. The ARG
column gives the assigned register number (20 indicates that a nonbasic
register must be assigned). A maximum of three work registers and one
DO index register is used. (Actually, there are only two registers after
B(I) is set up as a common subexpression. See A(I) statement.) In
this example, all the variables qualify as temporary variables, and the
variables E, F, and X are assigned registers 00, 14, and 13,
respectively. The variables C, M, and K are strictly temporary
variables that can be assigned register 15. The temporary variable N
satisfies the lower DO index condition and hence is assigned
register 01. The temporary variable KK satisfies the upper DO index
condition and is assigned register 00. The variables A and B are

29

assigned nonbasic registers. The variable J, although temporary, cannot
be assigned an auxiliary register over its domain, since none is
available. However, its domain can be subdivided into two local
domains, each of which satisfies the strictly temporary variable case (J
is assigned register 15). Since, in general, J can be assigned a
different register in each domain, its ARG column has the value 20.

FORTRAN COMPILER TEST1

PROGRAM ILLUSTRATES THE USE OF AUXILIARY REGISTERS
DIMENSION A(l) , B(l)
E=l
F=1
C=l
X=E+F*C
M=2
J-l+M
K-2*J
N=K+1
DO 10 l=N,5
A(l)=B(l)+1./(B(l)*B(l))

10 CONTINUE
KK=B (I)
DO 20 1=1,KK
X=X+1

20 CONTINUE
J=3
X-J*J
STOP
END

Figure 2. Sample program listing.

30

NAME TABLE

INDEX NAME DIM TYPE ARG

1 A 1 0 20
2 B 1 0 20
3 E 0 0 0
k F 0 0 14
5 C 0 0 15
6 X 0 0 13
7 M 0 15
8 J 0 20
9 K 0 15

10 N 0 1
11 1 0 20
12 KK 0 0

Figure 3. Register table.

Jt is assumed that the loader will store the pointer value
n-1 in the register allocated to A if register n contains A(J).

5.1.4 Program Execution

The relative Wang code generated is shown in figure 4.
program illustrates the following points:

The

(a) Remembering constants—Steps 0 to 3 store 1 into E, F,
and C. However, since X has been assigned register 13, the system
changes ST 15 to St 13 to save a step and computes X in register 13.

(b) Expression optimization—Steps 4 to 6 translate X«=E+F*C.
The parse string is XCF*E+=. Since the system remembers that F is in
the window, it does not recall it, but simply multiplies the value by
the result of X obtained so far (step 4).

(c) Strictly temporary variables—Steps 7 to 10 translate
M=2; J=l+M. Steps 11 to 13 translate K=2*J; N=K+1. Even though M, J,
and K are using register 15, the register number is changed to 01 to
correspond to the first assignment for N. Step 11 illustrates the use
of the special "2*" operator that does a repeated addition to save a
step.

31

STEP CODE BUTTON KEY STEP CODE BUTTON KEY

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

0001
0600
0614
0613
0413
0700
0213
0002
0001
0001
0201
0201
0001
0201 +
0900 SHIFT

DOO

ST
ST
ST
X

RE
+

ST

+
+

B

0615
0801

I
0215
1511
0715
0600
0701
0615
0801

/
0215
0700
0614
0812
0815
0214
1511
0615

ST

RE
ST
RE
ST

+
RE
ST

ST

E 1
00
14
13
13
00
13
E 2
01
E 1
01
01
E 1
01
MARK

15
RECALL

15
INDIR
15
00
01
15
RECALL

15
00
14
X**2
1/X
14
INDIR
15

35 0005
36 0600
37 0001
38 0201
39 0902
40 0806
41 0800
42 DOO
43 0001
44 0615
45 0801
46 B
47 0215
48 1511
49 0715
50 0912
51 0600
52 0001
53 0601
54 0900
55
56 0001
57 0213
58 0001
59 0201
60 0902
61 0806
62 0800
63 D01
64 0003
65 0615
66 0812
67 0613
68 0903
69 0914

ST

+
SHIFT

ST

RE
SHIFT

ST

ST
SHIFT

D01

+
SHIFT

ST

ST
SHIFT
SHIFT

E 5
00
E 1
01
ALPHA
SIN
SEARCH

E 1
15
RECALL

15
INDIR
15
INT
00
E 1
01
MARK

E 1
13
E 1
01
ALPHA
SIN
SEARCH

E 3
15
X**2
13
STOP
END

Figure 4. Wang code listing.

32

(d) The DO loop label—Steps 14 to 15 define the DO loop D00.
The system knows that the index N is immediately available and hence can
store it in the first available register used by computing B(I).

(e) Common subexpression—Steps 16 to 22 are used to compute
the common subexpression B(I) and store it in 00.

(f) Squaring—Step 30 is used to find B(I)*B(I).

(g) End-of-DO-loop—Steps 35 to 42 perform the end-of-DO loop
check (a, SIN causes a two-step jump if the contents of register 00 are
less than the contents of the display window).

(h) Upper DO index—Steps 43 to 51 translate KK - B(I) ,
storing the result in register 00. Doing so saves the updating of
register 00 at the end of the DO loop (see steps 35 to 36 for the
previous DO loop).

In many test cases, as much as 20 percent of the core was
saved due to the register optimization.

5.2 Additions to the Optimizer Subsystem

The second-pass optimizer (sect. 3.5) contains eight additional
passes through the translation code in an effort to reduce the number of
steps:

(a) This pass effectively changes the FORTRAN statement,

IF(A)N1,N1,N2 to IF(A.LE.0.)GOTO Nl

GOTO N2

unless statement Nl follows. In that case, IF(A.GT.0.) GOTO N2 is used.
Also, the statement

IF(A)N1,N2,N2

is changed to

IF(-A.GT.0.)GOTO Nl if statement N2 follows

or

IF(-A.LE.0.)GOTO N2 if statement Nl follows.

If neither follows, no change is made.

33

(b) This pass changes the sequence

Jif+
search
LI
search
L2
Mark
LI

to

ch sign'
Jif+
search
L2
Mark
LI

It does this before the pass that eliminates unreferenced marks, so that
Mark, Ll is eliminated also if it is not referenced. The code arises
from the FORTRAN statement IF(A), Ll, L3, L2 with statement Ll
following.

(c) This pass checks to eliminate trailing zero digits in a
number when advantageous.

(1) If there is only one trailing zero of an integer, no
change is made.

(2) Two or more trailing zeros of an integer are changed
to exponential notation; for example, 1000 is changed to 1.E3 with the
translated code El, a, f3.

(3) Trailing zeros of decimal numbers are eliminated; for
example, 12.7300 is changed to 12.73.

(4) If the first trailing zero of a decimal number is
left of the decimal point, the decimal point is eliminated, and
steps (1) and (2) apply; for example, 12500.00 is changed to 125E2,
with the a shift used to multiply by 100.

(5) All the trailing zeros of a number with an exponent
to the right of a decimal point are eliminated; for example, 12.50E23 is
changed to 12.5E23. This change does not result in an optimum
translation, since the decimal point can be eliminated by use of 125E22.
It is eliminated in pass (d).

(6) If the first trailing zero of a number with an
exponent is to the left of a decimal point or just to the right of it,
the decimal point is eliminated, and the exponent is adjusted; for
example, -120.00E25 is changed to -12E26, and 32.0E-15 is changed to
32E-15.

(7) The code E0, ST R, is changed to T R.

34

The net effect of this pass is to make sure that no number
is written with a trailing zero (in the mantissa, if in exponential
notation) unless it is an integer multiple of 10, but not of 10 for
n > 2.

(d) This pass insures that identical numbers have identical
representations.

(1) Integers are left untouched.

(2) Decimal points are introduced, if an exponent can be
eliminated; for example, 12E-1 is best written 1.2.

(3) An exponent of 1 is eliminated for a nondecimal
mantissa; for example, 12E1 is changed to 120.

(4) A SETEXP notation is changed to an a shift by
introduction of a decimal point; for example, 12E-16 is best written
1.2E-15. The exponent field can now be translated in two steps (a, F15)
instead of four, with a net saving o*f one step.

(5) All leading zeros of decimal numbers are eliminated;
for example, 0.03 is represented as 3E-2 and 0.0001 as 1E-4.

(6) For a decimal point with an exponent, the exponent is
eliminated, if possible, by shifting the decimal point to left; for
example, 12.3E-2 is changed to .123.

(7) Otherwise, a check is made to see if a SETEXP
notation can be changed to an a shift; for example 12.3E-16 is best
written 1.23E-15 as in item (4).

(8) Otherwise, a check is made to see if the exponent can
be eliminated by moving the decimal point to the right; for example,
12.36E2 is changed to 1236, and 0.013E2 is changed to 1.3.

(9) Otherwise, a check is made to see if the decimal
point can be eliminated by moving it to the right; for example, 12.3E5
is changed to 123E4 (but not 12.3E-15 to 123E-16). See item (4) about A
SETEXP notation.

The net effect of passes (c) and (d) is to obtain a unique
translated representation for all numbers.

(e) This pass eliminates the necessity of entering a number
when it is determined that it is in the window. Thus, the FORTRAN code

A(l)-1.2
X-1.2
Y-1.2

35

is translated

generated [A(l)] in LT
E 1
E .
E 2
INDIR
ST LT
STORE
STORE *

(f) This pass further attempts to optimize steps involving
arrays.

(1) If the value of a needed array is in the window, it
is not generated again. For example,

A(I) «...

T = A(I)+. /.

is obvious.

(2) If the index of an array is determined to be in a
register, it is not generated again. For example,

A(I) =
X = Y
T - A(I)+.. . . .

The determination is made that £[A(I)] is still in LT, so the second
A(I) is translated INDIR, RE LT. Another example is

T « B(I)*A(I)
B(I)=X
A(I)=Y

where T is a basic register. The computation is performed in that
register, leaving l[A(I)] and £[B(I)] undestroyed.

(3) Item (2) applies if the index differs only by a
constant. A code to subtract or add the constant is supplied as needed.
This pass was motivated by frequent use of an exchange code in problems
involving arrays. Thus, the code

T=A(I)
A(I)=B(I)
B(I)=T

36

is now translated with the locations of A(I) and B(I) generated only
once.

(g) This pass tries to avoid an extraneous code involving the
use of register 00.

(1) It eliminates T 00 when not needed. For example,

IF(A)5,5,10
5 IF(B)15,15,20

15

produces a code involving T 00 twice. The second T 00 is eliminated.

(2) It eliminates the code RECALL N, ST 00 when not
needed, such as occurs in the translation

D05I=1,N
D05J=I,N

(3) It replaces the code RE 00, . . ., T 00, by T 00,
. • . provided that the user has not specified a COMPILE R for 00 or
that the meaning has not changed. This item is for situations in which
00 is used as a temporary variable prior to a zero being needed in 00
for any reason.

(h) A final check is made to eliminate all recalls of
nondimensional variables that are in the window. If an RE R is directly
preceded by PRINT, format, or INDIR, ST R, or any jump, SEARCH, LI, or
combinations of these, and the next previous operation is a pR, then the
RE R is eliminated. Similarly, if the code is STORE, X or RECALL, Y
followed by the above nondestructive steps, followed by RECALL, X, the
last two steps are eliminated. After any jump, a STOP or RETURN is
allowed in place of SEARCH.

6. EXAMPLE

This lengthy example illustrates the use and effectiveness of this
compiler. The example consists of a main program that calls the
subroutine POLRT, taken without change from the 360 Scientific
Subroutine Package.5 The POLRT is used to find the complex roots of

^System/360 Scientific Subroutine Package, Version III, Programmer's
Manual, Program Number 360A-CM-03X, ed. GH20-0205-4, IBM Corporation,
White Plains, NY (August 1970), 181-183.

37

real polynomials; the calling program must supply the degree M and the
M+l coefficients XCOF of the polynomial. A simple main program was
therefore written to read these inputs, call POLRT, and write the
output. Figure 5 shows the program, with comments to give motivations
for each of the COMPILE statements that affect the translation. The
MAIN was made a subroutine to allow the arguments to be aligned
identically to POLRT. This is a common maneuver to save steps when
subroutines are called, but it does require the COMPILE S statement.
The dimensions of arrays were guessed at to try to allow large-degree
polynomials in a fully expanded Wang 520.

In the *FTC card for MAIN, no options were specified; hence, both
the source code and the translation output (name table, translation, and
reference table) are printed. Figures 6 to 8 show the translation
output. These have been previously described,1 except that the
reference table (fig. 8) now contains three additional lines: The top
work register is 09 (registers 10 to 15 contain the arguments); only
single DO loops are involved (because of reading and writing arrays);
and one is the maximum number of work registers needed to translate any
statement.

In the *FTC card preceding POLRT, the AUTO option was specified.
Since POLRT calls no other routines and all of its nonargument variables
are initialized at every entry, many steps are saved by allowing the
compiler to assign basic registers for the most frequently used
variable. If some of its nonargument variables were not initialized
every time, or if POLRT had been called in a loop, then some register
conflicts could arise. Then AUTO (nn-mm) would have to be used by the
programmer to specify a more limited range. It is always up to the
programmer to insure that no conflicts arise when many routines are
compiled together.

Figure 9 contains the source listing of POLRT (the original comments
have been deleted); figure 10, the name table; figure 11, the
translation; and figure 12, the reference table. In figure 12, the work
registers are 09, 08, and 07, and register 01 is used for the single DO
loops. If AUTO were not specified, registers 02-06 would never be used.
The name table in figure 10 assigns N, X, Y, SUMSQ, and IFIT to these
registers. In addition, the compiler senses that TEMP can be assigned
to one of the work registers (07), since it is a temporary variable in a
single domain that does not use register 07. Similarly, the variable DX
was assigned register 01, because it is defined and used in a single
domain outside a DO loop, and the variables XTZ, L, and ITEMP were all
assigned register 00. (When L is used as an index, it is assigned

lH. Bloom and A. Hausner, FORTRAN IV Compiler for the Wang 520
Calculator, Harry Diamond Laboratories TM-73-15 (July 1973),

38

FORTRAN COMPILER MAIN

SUBROUTINE MAIN!XCOF,CQF,M,ROQTR,ROOTI,I ER)
DIMENSION XCOF125)tCOFt25),ROOTR(24),ROOTI(24)
READO M

COMPILE W MU500,1,3)
C THIS W CARD PRINT'S M ON THE READ IN FORMAT 1500 WITH SPACES BEFORE'
C AND AFTER THE PRINT.

N = M+l
READO (XCOFl I), I=l,N)

COMPILE W XCOF10510,1,0)
C THIS W CARD PRINTS. THE COEFFICIENTS XCOF ON THE READ IN FORMAT 0510.

CALL POLRT(XCOF,COF,MfROOTR,ROOTI,IER)
COMPILE S POLRTIE,E,E,E,E,E),3-0
C THIS S CASD INDICA/ES THAT NO ARGUMENTS OF MAIN NEED BE SAVED OR
C RESTORFD, AND THAT NO ARGUMENTS OF POLRT NEED BE INPUTTED OR OUT-
C PUTTED. THE REASON MAIN WAS MADE A SUBROUTINE WAS TO MATCH ARGUMENTS
C FOR THIS PURPOSE.

IF(IEp.NE.0) GOTO 5
WRITE!) (ROOTRUItROOTKIt« 1=1,M)

COMPILE W ROOTRI0013,0,t)
COMPILE W ROOTI(lilO,OrO)
C THESE W CARDS PRINT THE REAL AND IMAGINARY ROOTS IN FORMATS 0010 AND
C 1110, SEPARATING EACH PAIR OF ROOTS BY SPACES.

STOP
5 WRITEt) IEP

COMPILE fi IER!0700,0,1I
C THIS W CARD PRINTS THE VALUE OF IER

STOP
END

IN THE FORMAT 0700 AFTER A SPACE.

Figure 5. Program illustrating use of COMPILE statements.

NAME TABLF

INDEX NA*E DIM TYPE ARG

I MAIN 0 i 50
2 XCOF 25 0 15
3 COF 25 0 14
4 M 3 1 13
5 ROOTR 24 0 12
6 ROOT I 24 0 il
7 IER 0 i 13
8 N 0 I 20
9 I 0 I 20

13 POLRT 3 , 3 53

Figure 6. Name table for progi ram M7

register 01.) These temporary variables would have been assigned
auxiliary registers even if AUTO had not been specified. The net effect
of AUTO was just the assignment of variables in registers 02-06.

When the reader examines the translation of POLRT in figure 11, he
must keep in mind some of the new optimization features automatically
used. For example, N+l is a common subexpression in the line below
statement number 35, NXX=N+1 and two lines following KJ1=N+1. Register
00 is used for this subexpression, computed in steps 56 to 58, and later
recalled in step 64. Also, KJ1 is stored in register 07 (step 65) for
use in the DO loop following (steps 72 and 88). Register 07 was
available for that local domain and one step was saved by this action.
(If KJ1 had been a basic register, one step would have been wasted.
This feature is implemented before register assignments and does
sometimes lead to wasted steps.)

Following the POLRT source deck was an *LDR card and an *END card
with no options listed. The storage maps (fig. 13) and program listing
(fig. 14) are printed regardless of any options that affect only entry
point codes, mark numbers, and registers assigned. In figure 13, the
arrays were assigned registers 16 to 113 as listed under LIMITS in the
storage map for MAIN. (These are not repeated in the storage map for
POLRT, because the dimensions there were given as one. All variable
dimensioned arrays should have dimension one.) The other columns are
almost self explanatory. The INDEX, NAME, DIM, TYPE, and ARG columns
are repeated from the name table (fig. 6) only for variables that must
be assigned space. Columns for COM and EQU are for variables in common
or equivalence. The LOC column contains the location of the variable
or, in the case of an array, the location of the pointer. These
locations can be used to recall these variables with the indirect code.
To recall variables with the direct code, the REG column lists the
direct register name. The LIMITS column is applicable only to arrays.

40

STEP CODE BUTTON KFY STEP CODE BUTTON KEY

0
1
2
3
4
5
6
7
3
9

10
LI
12
13
14
15
16
17
18
19
23
21
22
23
24
25
26
27
28
29
30
31
3?
33
34
35
36
37
38
39
40
41
42
43
44

M

N

0900
f

0802
0015
0034
0609
3933
3613
0332
1533
0802
0015
0609
0001
0209
0901

I
0001
0601
3930

I
0609
0902
1133
0600
0715
0209
3002
3233
0903
1511
3639
3932
3513
0801

SHIFT
AIN

SI
SHIFT

ST

SP-RE

ST

♦
SHIFT

ST
SHIFT

AB33
ST

SHIFT
SHFT F

ST
RE
+

SHIFT

ST

/

N
3633
0001
3231
0902
3806
3833

L
P

3713

ST

SHIFT

MARK

PRINT
CLRDSP
E 4
09
STOP
13
PRINT
33
PRINT
CLROSP
09
E I
09
STORE

E I
01
MARK

09 '
ALPHA
33
00
15
09
E 2
33
STOP
INDIR
39
PRINT
13
RECALL

30
El
31
ALPHA
SIN
SEARCH

AB30
OLPT

45
46
47
48
49
53
51
52
53
54
55
56
57
58
59
63
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
11
78
79
80
3 1
8 2
83
84
85
86
37

0804
0800

«

000 1
0601
0900

L
0802
3315
0701
0609
0712
3209
1511
3 709
3832
0010
0701
0609
0711
0209
1511
0709
3332
1110
0713
3630
0001
0201
0902
0806
3833

1
0903
3933

383?
0015
0710
3832
0700
090 3
0914

ST
SHIFT

ABOl

RE
sr
RE
♦

RE

RE
ST
RE
♦

RE

SHFT F
RE
ST

♦
SHIFT

ABOl
SHIFT
SHIFT

RE

RE
SHIFT
SHIFT

J IF 0
SEARCH

E 1
01
MARK •

PRINT
CLRDSP
01
39
12
39
INDIR
09
PRINT
E .
01
09
11
09
INDIR
09
PRINT
10
13
33
E I
01
ALPHA
SIN
SEARCH

STOP
MARK

PRINT
CLRDSP
10
PRINT
00
STOP
END

RE 13

Figure 7. Wang relative code for program MAIN.

4J

REFERENCE TABLE

LABOO * -. 20 42
LABOL -. i 51 77

HE flRST AVAILABLE WORK REGISTER IS 9
MAX 00 LOOP NEST IS 1
MAX REG RANGE IS I

Figure 8. Reference table for program MAIN.

FORTRAN COMPILER POLRT AUTO

SUBROUTINE POLRT!XCOF,CQF,MfROOTR*ROOYl,!ER)
0IHENSION XCOF111,COFI11,ROOTRlI),ROOTI11>
DOUBLE PRECISION XÖ,Vo,X,Y,XPR',VPR,UX,UVfV,YT,XT,U,XT2,YT2,SUMSQ,

l DX,DV,TEMP,ALPHA
IFIT-O
N*M

, IER»0
lFUCOFINftniOf25f 10

10"IF1N) 15,15,32
15 IER-1
ZO RETURN
25 IER«V

GO TO 20 f,t
M *****
$J GO TO 20
32 IFIN-36» 35,35,30
*5 NX*N

NXX-N+1
N2M
KJ1 -NU
00 .iO L*1,KJ1

, Mf^KJl-Lfl
*<> COFCMt» = XCOFIt>
m xo*.oo5ooioi

YOxO.OlOOOlOl
IN=0

$0 X-XO
;* XO*~iO.O*YO
5fe YPr-io.o*xA

Figure 9. Program listing for POLRT.

42

X=XO~
Y*YO •
IN=lN*l
GO TO 59

55 IFlT=l
XPR*X
YPR = Y

59 ICT'O
60 UX^.0.0

UY=0.0
V «3.0
YT=0.0
XTM.O
U»COFt'N*ll
IFIU> 65,130,65

65 00 70 1 = 1, N

TEMP=COF(L»
XT2=X*XT-Y*YT
YT2=X*YT+Y*XT
U*U*TEMP*XT2
V=V*TEMP*YT2
FI = I
UX=UXtFI*XT*TEMP
UY*UY-FI*YT*TEMP
XT=XT2

70 YT*YT2
SUMSQ=UX*ÜXfUY*Üf
IF(SUMSQ) 75,110,75

75 DX=tV*UY-U*UX)/SUMSQ
■*—>c=x*ö)r'" '■

DY=-MU*UY*V*UX »/SUMSQ
Y=YfDY

78 IF(DABS(DY>+DABS(DX)-WOD-05) 100,80*80
80 ICT=ICT*1

IFUCT-500) 60,85,85
85 IF(IFIT)100,90,100
90 IFI1N-5) 50,95,95
95 IER=3

GO TO 20
100 00 105 L=l,NXX

MT=KJ1-L*1
TEHP=XCQF(MT)
XCOF(MT) = COFU)

105 C0FIL> = TEMP
ITEMP=N
N=NX
NX=ITEMP
IF(IFIT) 120,55,120

110 IFCIFITl 11*5.50,115
115 X=XPR .

Y*YPR
120 IFIT«0
122 lF<DABS(Y1-i.QD-4*DABS(XM 135,125,125

Figure 9. Program listing for POLRT (cont'd).

43

125 AtPHA=X+X
SUMSQ=X*X*Y*Y
N=N-2
GO TO 140 .

130 X=0.0
NX=N<-1
NXX=(MXX-1

135 Y=3.0
SUMSQ=3.0
ALPHA=X
N=N-i

140 C0H2) = C0F(2)+ALPHA*CUFI1I
145 DO. 150 L=2,N
150 COFILH) = C0F(L*IUALPHA*C0F(U-SUMSQ*C0F(L-1)
155 ROOTI(N2)=Y

ROOTR(N2)=X
N2=N2+i
IF (SUMSQ) 160, 165, 160

160 Y=-Y
SUMSQ'0.0
GO TO 155

165 IF(N) 20,20,45
END

Figure 9. Program listing for POLRT (cont'd).

Listings under LABEL and MARK indicate the mark code given for each
label. In figure 13 MAIN used marks 0000 to 0002, and POLRT used
marks 0003 to 0107.

No conflicting marks or registers exist, despite that register 114
was assigned to the variable N in MAIN and the variable XO in POLRT.
This is part of an optimization scheme that equivalences variables in
several programs. In effect, the variables are placed in common. To be
a candidate for such treatment, the domain of a variable must not
contain any function or subroutine calls, and the variable must not be
in an EQUIVALENCE or COMMON statement. Such variables are considered
local to the problem and can be destroyed after leaving the program.

The final listing is shown in figure 14. Array pointers are first
set up (steps 02 to 13). Next, the routines MAIN and POLRT are listed
with the assigned registers, labels, and entry points replacing the
symbolic ones. All statement references in figures 8 and 12 are so
replaced. Finally, the large numbers .500101D-02 and .1000101D-01
needed in steps 99 and 103 of POLRT (fig. 11, 12) are generated as data
in the program code in steps 720 to 735. Because any steps converted to

44

NAME TABLE

NDEX NAME DIM TYPE ARG

I POLRT 0 0 50
2 XCOF 1 3 15
3 COF I 0 14
4 M* 0 I 13
5 ROOTR I 0 12
6 ROOTI i 0 U
7 IEP 0 I 10
8 • XO 0 0 20
9 YO 0 0 20

10 X 0 0 3
u i 0 0 4
12 , XPR 0 0 20
& YPR 0 0 20
14 UX 0 3 23
15 UY 0 0 20
16 V 0 0 20
17 YT 0 3 20
18 XT 0 0 2a
19 Ü
20 XT2

0
3

0
3

20
0

21 YT2 0 0 20
22 SUMSQ 0 0 5
23 DX 3 3 1
24 DY 0 0 20
25 TEMP 0 0 7
26 ALPHA 0 0 23
27 IFIT 0 6
28 N 3 2
29 NX 0 20
33 NXX' 3 23
31 N2
32 KJ1

0
0

20
20

33 L 0 0
34 MT
35 IN

0
0 I i

36 ICT 3 £ 23
37 I 0 1 20
38 FI 0 0 20
39 ITEMP 3 1 .0

Figure 10. Name table for] POLRT.

45

STFP CnOE *UTTCN KEY STEP CODE rVJTTON K F f

9 3999 SHIM MA^K 55 1 M<
1 PHI RT 5 6 363Ü ST 00
2 9136 T 16 5 1 3001 t 1
3 3713 pr 13 58 0200 f 00
4 3403 ST OS 5P 39 C I SHIFT STORE
s 36:32 ST 32 60 NXX
6 0110 T 13 61 0001 F I
7 9 703 RE OK 62 3931 SHIFT STORE
9 3b 3« ST 39 63 \'2
9 3331 F I J4 9 70 0 RE 0 0

13 3239 ♦ 39 65 0607 ST 07
li 3715 PF 15 66 0901 SHIFT STORE
12 020S ♦ 09 57 KJl
13 1511 I NO I R 68 0001 F I
14 3739 PF 39 6 -) 0631 ST 01
15 3934 SHIFT J NE 0 70 090 0 SHIFT MARK
16 3830 SEARCH 71 000
I ^ 25 72 0707 of 07
Id 0100 T 00 73 C609 ST 09
19 1738 PF 38 74 3731 RE 31
23 39 3 2 SHIFT ALPHA 75 3309 - 09
21 3835 J IF ♦ 76 000 1 E I
2? 3333 SFAPCH 7/ 0209 f 09
21 3? 78 0714 PF 14
24 3001 f i 7 9 3239 f 39
2b 0510 ST 10 33 0731 PF 01
26 3900 SHIFT MARK 31 0603 ST 08
27 20 32 0715 PC 15
28 3Q15 SHIFT PFTUPN 81 0208 *■ 03
29 3930 SHIFT WAPK 34 1511 [NDIR
3 0 25 35 07 08 Pfc 38
31 0304 F 4 66 1511 INDI R
3? 3613 ST 13 37 36 09 ST 39
33 3830 SFAPCH 3d 0707 PF 07
3 4 ?3 . 59 0600 ST 00
35 0900 SHIFT MARK 93 3031 F I
36 33 91 0201 t 31
37 3332 F 2 92 3Q02 SHIFT ALPHA
3-8 3610 ST IC 93 33 36 SIN
39 3833 SFAPCH ^V4 0300 SEARCH
40 23 95 000
41 090C SHIFT MARK ?6 3933 SH I F T MAPK
42 32 97 45
43 9732 PF 9? 98 C3 31 RECALL
4 4 3609 ST 09 99 .5391310000000-02
45 0100 T 00 100 0901 SHIFT STORE
45 300 3 F 3 101] <0
47 3336 E 6 132 3631 RECALL
48 3 3 39 - 99 133 .1300101033000-01
40 39 92 SHirT ALPHA 134 0901 SHIFT STORE
53 3895 J IF r 105 YO
51 9900 SFAPCH 106 0933 E 3
52 30 107 3901 SHIFT STORE
53 3 732 PF 02 13P N
54 0901 SHIFT STOFF 139 3900 SHIFT MARK

Figure 11. Wang code for POLRT.

46

LV

•(P.^UOD) iHlOd JOj apoo 6in?M

GO IS 9090 613

*c 3» VCZC 813
60 x b0*?0 Z13

1A 913
nvo3a 1C6C 5IZ

6C IS 6C9C ♦/I?
ec 3d €CZC €iz
00 - 00€0 31Z
ec X 6C*C nz

1A C1Z
-|lVD3a 1C6C 6CZ

8C IS 8C9C 6CZ
*?c 3d ♦>CZC ZCZ
00 X 0C*>0 9CZ

IX 5C3
nvo3b 1C8C ♦>CZ

00 IS 009 0 €03
to 3^ €CZC 3C3
zc IS ZC9C 1C3
60 3« 60ZC 003

a i ONi mi 661
60 4 6CZC 661
¥1 3d MZO Z61
6C IS 6C9C 961
00 4 0030 <;6i

I 3 10C0 ♦/61
CC - CC€C tfcl
10 3* 1CZC 361
CC IS CC9C 161
30 3d 30Z0 061

TOO 681
xavw 13IHS CC6C 86 1

1C IS 1C9C Z61
1 3 1CCC 961

0€1 581
H0HV3S CC8C »;81
0 3N r 131HS ♦/060 €81

n 38 1
3«01S IdlHS 1C6C 181

60 3« 6CZC 06 1
dlONl 1151 6Z1

6C 4 6C30 8Z1
♦/I 3d MZO ZZ1
60 4 6030 9Z1

1 3 ICCC 5ZI
60 IS 6C9C ♦>Z1
30 3b 30Z0 a 1

IX 3Z1
3H01S 131 HS 1C6C 1Z1

1 3 1C0C 0Z1
1A 69 1

3b01S 131HS 1C6C 691
A Z91

3aois 13IHS 1C6C 991
AO 591

o 6UPM •II sjinbTj

3301S 13IHS 1060 ♦>91
>n €91

-Jdins iilHS 1060 391
0 3 ocoo 191

C9 C91
XdVw H1HS 0060 651

1J1 851
3b01S 131HS 1060 Z51

0 3 0000 951
65 551

>avw 13 1 HS CC6C *S'l
ddA € 51

3aojs 13IHS 106 0 351
vc 3 3 *?czo 151

doX C51
3MJ1S 13IHS 1C6C 6«7l

€C 33 €CZC 8*1
50 lb 9090 L*7\

1 3 10CO 9*1
55 5*1

>av* 13IHS CC6C «7<7l

65 €V1
HObVdS 0080 3M

NI 1*1
3bCUS 1 J1HS ICfcC C*>\

60 •f 6030 6€1
1 3 ICCC 8€1

60 IS 6090 2€1
Nl 9C1

TIVD3Ö icec 5€1
♦/O IS V090 *€1
1C 3 3 1CZC €€1
EC IS tC9C 3€1
ZC 3d ZCZC 1C1

UA on
3bUlS 131HS 1050 6Z1

1C > IC*C 831
fcC 3d 6CZC Z31
10 IS 1090 931

U 3 a CCZC 531
ux *21

3 an is 131HS 1060 €31
ZC > IC*>C c'c\

CA 131
nvi?H 1C8C C31

zo IS Z090 611
00 lb 0C^>0 611

SHO ZlOO Zll
0 3 0000 911

1 3 ICCC 511
CO IS €090 Ml

eo IS 809 0 €11
UX Zll

nvoau 108 0 111
05 Oil

A3* NOling 3CJO0 d31S A3X NUllf'tJ 3ÜJ3 d3lS

STF0 CODE JUTTON KEY STFP CODE 8UTT0N KEY

220 0801 RECALL 11^ XT
221 XT 276 C301 RECALL
222 3438 x 08 277 YT2
223 0239 f 39 278 3901 SHIFT STORF
224 390 1 SHIFT STORE 279 YT
225 YT2 280 0702 RE 0?
226 0707 PE 07 281 3630 ST 33
227 3639 ST 39 282 0001 E I
223 3733 Re 30 233 3201 ♦ 31
229 3439 X 39 284 0902 SHIFT ALPHA
230 0801 RECALL 235 0806 SIN
231 U 236 3803 SEARCH
232 3239 f 39 287 DOl
233 0901 SHIFT STORE 289 3801 RECALL
234 U 239 UX
235 0707 RE 07 290 381? X**2
236 3639 ST 09 291 0605 ST 05
237 0801 RECALL 292 0801 RECALL
238 YT2 293 UY
239 0409 X 39 294 3312 <**2
243 3831 RECALL 295 3205 ♦ 05
241 V 296 0904 SHIFT J NF 0
242 3209 ♦ 39 297 0800 SEARCH
243 0901 SHIFT STORE 298 110
244 V 299 0801 RECALL
245 3731 RE 31 • 300 V
246 3931 SHIFT STORE 331 3631 ST 31
247 FI 302 0801 RECALL
248 3609 ST 39 303 UY
249 3801 RECALL 304 04 01 X 01
250 XT 305 C301 RFCALL
251 0409 X 39 306 U
252 3737 RE 37 337 3608 ST 38
253 3439 X 39 308 C801 RECALL
254 3831 RECALL 309 UX
255 UX 310 0408 X 38
256 0209 *■ 09 311 0331 - 31
257 3931 SHIFT STORE N 312 0705 RE 35
258 UX 313 3531 / 31
259 0801 RECALL 314 0203 ♦ 03
260 UY 315 0801 RECALL
261 0609 ST 09 316 U
262 0801 RECALL 317 0609 ST 09
263 FI 318 3801 RECALL
264 0608 ST 08 319 UY
265 0831 RECALL 320 0409 X 09
266 YT 321 3331 RFCALL
267 0406 X 08 322 V
268 0707 RE 07 323 0608 ST 08
269 0408 X 08 324 C301 RECALL.
270 0309 - 09 325 U<
271 0901 SHIFT STORE 326 3408 X 08
272 UY 327 3239 ♦ 39
273 0700 RE 00 328 3312 CHS
274 0901 SHIFT STORE 329 0609 ST 09

Figure 11. Wang code for POLRT (cont'd).

48

6fr

•(p.^uoo) iHTOd xoj 9P03 6w3M 'IT 9JT\6TJ

H0dV3S CC8C 6£V
0 3N r IdIHS V060 8£V

90 3b 90/0 /£V
XN 9£V

aaois laIHS 1060 5£V
00 3b 00/0 V£V
zc IS 2C9C ££V

XN 2£V
"llV03b 1080 UV

oc IS CC9C C£V
10 3b 20/0 62*

200 82V
HDdV3S CC8C /2V

NIS 9080 92V
VHdlV IdIHS 2060 52*?

IC -» 1C2C V2V
1 3 1000 £2V
cc IS CC9C 22V

XXN 12V
nvo3b 1080 02V

80 IS 6C9C 61V
blONI 1151 81V

/c 3» /C/C ziv
6C IS 6C9C 91V

blONI 1151 51V
8C 3b 8C/C V1V

blONI 1151 £1V
80 4 8020 21V
VI 3a VUC UV
8C IS 8C9C C1V
10 3b 10/0 60V
6C 4 602C 8CV
51 3« 51/C ZOV
6C IS 6C9C 9CV
CC 3b CC/C 5CV
/C IS ZC9C VCV
60 3d 60/0 £CV

aiONi 1151 2CV
6C 4 6C2C 1CV
51 3>i 51/C CCV
60 IS 6C9C 66£
00 4 0020 86f

1 3 1CCC /6£
CC - CC£C 96£
10 3H 10/0 56f
CC IS CC9C V6£

IT* £6£
"UV03b ICRC 26t

20G 16£
XbVW 13IHS 0060 06£

IC IS 1C9C t6£
1 3 1000 8fe£

CCl ZP£
*bVfcl IdIHS CC6C 98t

02 5Bf

H0bV3S 0080 Vß£
01 IS 0190 £8£

£ 3 £000 28£
05 18£

H0bV3S CC9C C8£
4 3i r 5080 6Z£
VHdlV 131HS 2060 8Z£

SH3 2100 //£
6C - 60£0 9/£

5 3 5000 5Z£
6C IS 6C9C VZ£

NI £Z£
TIV03d 1080 2Z£

CGI 1Z£
H3dV3S 0080 0/C
c 3i r VC8C 69£

90 3d 90/0 89£
09 Z9£

H0bV3S CC80 99£
4 di r 5080 59£
VHd IV 131HS 2C6C V9t

SHO 2100 £9£
60 - 60£0 29£
20 (X) 3 2001 19£

VHdIV 131HS 2C60 09£
5 3 5000 65£

101 85£
3d01S 13IHS 1060 /5£

60 4 6020 95£
1 3 1000 55£
6C IS 6C9C VS£

101 £5£
~nVD3b 1080 25£

001 15£
H3dV3S 0080 05£
4 di r 5080 6VS
VHdlV 131NS 2060 8V£

SHO 2100 /V£
60 - 60£0 9Vt
CO 3 13HS 5011 5V£

VHdlV 131HS 2060 W£
1 3 1000 £V£
00 1 0010 2V£
60 4 6020 1V£

SflV 13IHS i160 CV£
10 3d 10/0 6££
60 IS 6090 6££

SöV 13IHS £160 /££
AG 9fc£

llV03b 1080 5££
VO 4 V020 V££

AO £££
3«Ü1S 1JIHS 1060 2££

60 / 6050 1££
9C 3* 5C/C C££

A3* NOlin« 3CIO0 d3lS A3X Nil Hfl? 30J0 d31S

STF" CPDf. BUT TUN KEY STEP CODt BUTTON KEY

440 5 5
441 0800 SEARCH
442 UD
443 0900 ShIFT NARK
444 113
445 0706 PF 06
44 S 0904 SHIFT J NF 0
*47 3900 SFAPCH
448 50
449 3801 RFCALL
451 XPP
451 0603 ST 03
452 0801 RECALL
453 YPP
4 54 0604 ST 04
455 0900 SHIFT MARK
456 120
45 7 0106 T 06
458 0704 *E 04
4 59 0913 SHIFT AM?
460 3609 ST 09
461 0100 T 00
462 0703 er 03
463 0913 SHIFT ABS
464 0902 SHIFT ALPHA
465 1104 SMFT F 34
466 0 30 9 - OfJ
46 7 001? CHS
469 0902 SHIFT At PHA
469 0305 J IF f
4 71 08 0 0 SEARCH
471 135
47? 0703 RE D3
473 0609 ST 09
4 74 0?0 9 f 09
475 3931 SHIFT STükF
476 ALPHA
477 0703 RF 03
478 0812 X**2.
479 0605 ST 05
48 0 0 704 PF. 34
481 3812 x**2
482 02C5 ♦ 05
483 000 2 1 2
4 84 330? - 02
485 0800 SEARCH
486 140
43 7 09 30 SHIFT "ARK
4 8 8 13 3
489 3133 T 03
49 0 090 1 RECALL
4 91 NX
492 0609 ST 09
493 0001 E l
494 030^ - Oo

495 0901 SHIFT STORE
496 NX
497 3801 RECALL
493 N<<
499 0609 ST 09
503 3301 E l
501 3?09 - 09
502 0901 SHIFT STORF
503 N<<
534 3900 SHIFT MARK
505 135
506 3104 T 34
537 3135 T 35
509 0703 RE 03
509 3901 SHIFT STORE
513 ALPHA
511 3001 E I
512 3302 - 02
513 0900 SHIFT MARK
514 140
515 0002 E 2
516 0609 ST 09
517 3714 RE 14
518' 0209 ♦ 09
519 3001 E l
520 0608 ST 08
521 3714 RE 14
522 0?08 f 08
523 1511 INOIR
524 0708 RE 08
525 3633 ST 08
526 C931 RFCALL
527 ALPHA
529 0408 N 08
529 1511 INDIR
530 0209 + 09
531 3002 F 2
532 0601 ST 01
533 0900 SHIFT MARK
534 003
535 0701 RE 01
536 3609 ST 09
53 7 000 1 E l
533 3200 f 09
539 0714 RE 14
54 0 32 39 ♦ 09
541 3701 PF 01
542 0608 ST 08
543 0714 RE 14
544 0?09 ♦ 09
545 1511 INOIR
546 0709 RE 08
54 7 0608 ST 08
548 3801 RFCALL
549 ALPHA

Figure 11. Wang code for POT^RT (cont'd) .

50

S1FP CODE BUTTON KEY STEP CODE BUTTON KEY

550 0408 X 08 605 0704 RE 04
551 1511 INDIR o06 0012 CHS
552 0709 PE 09 607 3634 ST 04
553 0208 f 08 638 3135 T 35
554 0701 kE 01 609 0800 SEARCH
555 0607 ST 07 6 10 155
556 000 1 E 1 611 0900 SHIFT HARK
557 0307 - 07 612 165
558 0714 RF 14 613 3133 T 33
550 0207 ♦ 07 614 3732 RE 32
560 1511 INDIR 615 0902 SHIFT ALPHA
561 0707 KE 07 616 0806 SIN
56? 0607 ST 07 617 0800 SEARCH
563 0705 PE 05 618 20
56* 040 7 X 07 619 3833 SEARCH
565 0308 - 08 620 45
56b 1511 INDIR 621 0914 SHIFT END
567 0609 ST 09
568 0702 PE 02
569 0600 <T 33
570 0001 E I
571 0201 ♦ 31
572 0902 SHIFT ALPHA
573 0306 SIN
574 0900 SEARCH
5 75 00 3
576 0900 SHIFT MARK
577 155
578 0831 RECALL
579 N2
580 0609 ST 09
531 0711 PF 11
562 0209 f 0<5
58 3 0734 RF 04
584 1511 INDIR
585 0609 ST 09
586 0801 RECALL
567 N2
588 0609 ST 09
589 0712 RE 12
590 0209 fr 09
}9l 0703 RE 03
592 1511 INDIR
593 C609 ST 09
594 0901 RECALL
535 N?
596 C609 ^T 09
5Q7 0001 E I
598 0209 f 09
599 3931 SHIFT STO^E
600 N2
oOl 0735 PE 05
63? 0934 SHIFT J NE 3
50 3 OCOO SEARCH
634 165

Figure 11. Wang code for POLRT (cont'd).

51

REFERENCE TABLE

POLRT
Xu • •. • • • • • • •
YO • ••••#• • • •
XPR' •••••••••.

•

•

1
131 112
105 124
150 450
153 453
163 255
165 263
167 241
169 210
172 205
182 231
225 238
333 336
476 510

55 432
60 421
63 579
67 393

108 136
158 353
247 263

17 30
23 42
27 34
36/52
71 95
97 623

110 381
143 155
145 443
160 367
185 488
189 287
298 444
351 371
391 428
442 456
471 505
486 514
534 575
577 .610
604 612

99
103

124
130

258
272
244
216
221
234
277

527
436
498
587

141
358

40

448

387

289
293
300
266
250
306

549
491
503
595

373

...

385
I-' .

UX" ' • •••••.••• 309 325
öy *"•-. . .~. .
v • ••••• »*•*« • •

303 3J9
322

YT ».-.»
XT

279
275

U • ••••••••• 316
VT? - . - - _
DY .»..•••••

* AL PH A • •••«....
NX .»«.....* 496

N2 600
KJl
IN • ••••••.'.. ,■ ■

IC T . • , . ." • '

25 •'•".••• f. ••»■.•,• •
32 •••••
20 6 18
33 • •••»»•••••
000
45
50
59
55 .
60 • •
130
DO I ...••••••••
110
100 •••••
D32
120
H5 ' ' ' '
143 ••••••••••
003 •

•

155 • . . . • •
165

.5001010000000-02

.1300131003330-01

THE FIRST AVAILABLE WORK REGISTER IS 9
MAX DO LOOP NEST IS I
MAX REG RANGE;IS^ 3

Figure 12. Reference table for POLRT.

52

LOADER MAIN

INDEX NAHE
I

STORAGE

DIM TYPE

..

XCOF
COF
M
ROOTR
ROOT I
I ER

25
25

. .9
24
24
0
0

0
0
I
0
0
I
I

MAP

ARG
!

15
14
13
12
U
10
20

COM

0
0
0
0
0

8

■equ" LOC,

o
o
0
0
0
0
0

15
14
13
12
U

.10
114

y.

REG LIMITS

UP15
UP14
UP13
ÜP12
UPU
UPIO
RE02

16 - 40
41 - 65

66 - im
90 - 113
0 .- 0
0 - 0

5
ABOO

(kAPQJ-

MARK

i .

OAOER POLRT

,STORi STORAGE

INDEX

2
3
4

' 5
6

s
9

10

M
12
13
14
15
16
17
18
19
20
21

NAME DIM

22

24

26
27
28
*9

COF
M
ROOTR
ROOTI
IE«'
xo
YO
X
Y
XPR
YPR
UX
UY
V
YT: ■■■*■
XT
U
XT2
YT2
SUMSQ
OX"
DY
TEMP
ALPHA
IF IT
N
NX

Figure 13. Storage map for MAIN and POLRT.

53

31 NT" ÖT7" l 2ö~ *0 0 ~ T29 SP^a^F" 0 -
32 KJl 'O i 20 0 0 130 SP-UP02 0- '0
33 i o i o. oo o upoo -,■.>;;■■ o - o
35 IN 3 l -20 0 0 Ul SP-UP03 0- 0

0 132 SP-ÜPQ4 0
0 133 SP-OPO** 0
0 0 UPOO

Figure 13. Storage map for MAIN and POLRT (cont'd).

54

STFP ÜMlf *UTTf\ \FY STf P COOL 001 TOM KFf

0 .1900 SHIFT MAC 5S l'JCl E(X) 0 l

I 100 0 rm 00 5c 071 0 *E 13
2 000 1 F l b7 3 8 04 J IF 0
i 000t) F- * =53 0*00 SFARCH
* 1615 ST IS 59 0001 ALL UP 01
s 3334 F 4 5 0 OOOi E 1
6 3333 r 3 61 0501 ST 01
7 1614 ST 14 62 0900 SHIFT M4«K
P 1006 F l 51 30 0 2 ALI UP 0?
Q 1335 F 5 64 C302 PF INT

n IM? ST 12 55 0^15 CLR^SP
ii 000 3 F 3 66 0 701 RC 01
12 000 ? P o 67 Q'TQQ ST m
1 3 161 l ST 11 nJ 9712 *E u
L4 iei2 PR INT e>9 3? 3 9 ♦ 09
15 1915 TL&PSP 73 1511 I NO I P
10 3334 1- 4 71 J70fi OF 09
17 060 9 ST 3 9 72 03 0 2 PRINT
19 3^33 CMIFT STOP 73 3010 E .
\Q 1513 ST 13 r4 3701 ,<F 01
20 0302 PF INT rs 3639 ST 39
21 150 0 SP-RF 00 76 1711 Qc

l 1
? ? 030? PF [VT 77 320° f 09
23 0015 CLDDSP re 151 l IISIOIR
24 0609 ST 0^ 7^ 3799 3{ 09
2^ o-ni E 1 H3 330? PRINT
26 120 9 f 09 31 1113 SHFT F 13
2 7 19 01 SHIFT ST(!P«: 32 3 713 «E 13

23 3732 St C2 -S3 C633 ST 03

2r> 000 1 F. 1 3 4 3331 E l
30 0 50 1 ST 01 15 3231 f 31

31 3 90 0 SHIFT r A&k 36 3 33 ? SHIFT ALPHA

3? 333C •ML UP 30 3 7 0^06 SIK

3 3 3639 ST 39 83 0600 • SEARCH

34 9Q02 SHIFT ALPHA 3 9 ooo ? ALL OP 0?
3S 11 13 SHFT r 13 >o 0901 SH ICT STOP

30 1613 ST 10 91 0900 SHIFT MARK

37 3715 W[15 3? 0001 ALL UP 01

33 0 20O f 0 9 93 030? PRINT

:>Q 000 2 E 2 9 4 1)13 CLPOSP
4 1 32 0 3 f OC)5 371 C 3 F. 13

41 0 90? SHIFT CTHP *6 (;°0 2 P^INT

42 151 l i\r IK) 7 0700 R| 0 0
4 J 3c, 0? ST 09 J;i 3303 SHIFT STHP

44 1«12 PR ip r 93 3-»3 3 SHIFT MARK

4 5 1513 / 13 13: 10 31 F (<) 31

46 3331 -cr. ti L 131 01 Oo T Of

47 1702 p r 0 2 102 0 71 3 *t l 3
41 ■3500 ST n ,<> 103 05 OH Sl 0 S
V< 1001 F l 134 060 2 ST 02
so 3211 ♦ 11 l Ob 31 IC T i:
r>i 09 0 2 SHIFT AL P H A 105 0 7 0 9 RF 3 R

5? 0 3 06 SIN 107 060^ ST 19

5 3 030 1 SF4CCH 103 3 001 F l

54 300 0 ALL UP uC 139 1209 * 09

Figure 14. Final Wang code listing.

55

S TFP fl'r,e h JTT ^j KFV STtP CÜOt BUTTON KEY

u n 0 71 s ^E 15
111 0209 ♦ 0 9
11? I5l i INni«
l l 3 C 709 Pb C3
114 09 34 SHIM J NF 3
115 13n SEARCH
116 COO 3 ALL UP 0 3
117 C100 T 00
11« C739 PE 03
119 0902 SHTFT ALPHA
120 0 805 J IF ♦
121 G600 SEARCH
122 0004 ALL UP 04
123 0001 F I
124 Co 10 ST u
125 0930 SHIP T MARK
Ufr 0005 ALL UP 35
127 3915 SHIFT «ETU*N
12.1 39)3 SHIFT MA*K
129 00 3 3 ALL UP 0 3
130 0034 E 4
131 OfclO ST 10
n? 3933 SEARCH
133 3335 ALL UP 05
134 3)3 3 SHIFT MARK
135 0006 ALL UP 06
136 C002 E ?
137 361) ST 13
13B OdOO SEARCH
139 0005 ALL UP 35
143 0 9)3 SHIFT 'MRK
Ul 3334 ALL UP 34
142 3732 KE 3?
143 0639 ST 09
144 0103 T 00
145 üd^i E 3
lih T'006 E t,
147 3339 - 39
I4Ü Cc-3? SHIFT ALPHA
140 OSO') J IF f
153 r>ROO SFARCH
151 3 3 36 ALL UP 36
1^2 07)^ PE 32
153 :;~>31 SHIFT STORE
154 07 15 RE 13
l->5 06ÜJ ST JO
156)33l t. i
157 0/3;) ♦■ CO
15"> 0 931 SHIFT ST03C
159 cpon s° oo
160 3001 [I
Ihl 39)1 SHIFT STORE
ut () a o i s p o i
163 3 733 <>c 33
164 0607 ST 0 7

lo5 3931 SHIFT STORE
166 0802 SP 02
167 0001 E I
169 3631 ST 31
169 0900 SHIFT MARK
I 70 0037 ALL UP 37
171 0707 RE 07
172 0609 ST 09
173 0701 RE 01
174 0309 - 09
I 75 3331 E I
1 76 0209 ♦ 09
177 071* RE 14
178 3209 f 39
179 3731 RE 31
180 060b ST 08
1913 715 R E I 5
192 3239 ♦ 08
193 1511 INDIR
194 0739 RE 08
185 1511 INDIR
186 0609 ST 09
187 0707 RE 07
199 0630 ST 00
199 0001 E I
193 3231 ♦ 31
191 3932 SHIFT ALPHA
192 0806 SIN
193 OdOO SEARCH
194 0007 ALL UP 07
195 0930 SHIFT MARK
196 0338 ALL UP 09
197 09 31 RECALL
199 0912 SP-T 12
199 3931 SHIFT STORE
233 37)2 RE 32
201 0901 RECALL
202 0911 SP-T 11
203 0931 SHIFT STOttE
2C4 0 7 33 RE 03
205 0000 E 0
206 0901 SHIFT STORE
237 39)3 SP 33
209 3900 SHIFT MARK
239 3339 ALL UP 39
210 0901 RECALL
211 37.^Z RE 32
212 3639 ST 08
213 0 50 3 ST 03
214)3)l E I
215 0000 E 0
2 16»)312 CHS
217 0600 ST 00
213 0607 ST 07
219 3831 RECALL

Figure 14. Final Wang code listing (cont'd).

56

LS

•(p.^uoo) ßUT^STi apoo 5in?M T^ux^ 'p\ sjmbxj

llV33d
60 X
CC 3b
6C IS
ZO 3b
21 3b

ddius idiHS
6C ♦
60 X
01 3d

1lV33d
6C IS
*?C 3b
6C X
60 3ti

nvo3b
60 IS
tC 3b
CC -
HO X
60 3b

11VD3b
ec is
*C 3b
Ct X
Cl 3b

nvo3b
CC IS
eo 3b
ZO IS
60 ^^

a ION 1
6C ♦
M 3b
60 IS
00 4

1 3
00 -
1C 3b
00 IS
20 3b

1CGC hit
60*70 \Ui
CCZC Hi
6C9C 9?t
ZOZC 9 2*
n/G v?t
ICfcC I2t
6C2C 22fc
8 0*/0 1?£
ouo 02t
108C 61?
8C9C 6U
♦7CZC ZU
6C*7C 91t
6CZC 9U
lüho «7it
609C tU
tczc ?u
CCtO 1U
80*70 OH
60Z0 6Ct
lObo öce
BC9C ZCt
♦?CZt 9Ct
LC*>C SCt
eizc «7U
lCbC tCt
CC9C £Ct
to^o lot
Z090 COt
bOZC 662
1U1 86?
sc2o zee
*?1 ZO 96?
6090 96?
0020 *?6?
10UC t6?
ooeo ?.b?
10ZC 16?
0090 062
?0Z0 66?

1 3
6L IS
?C JO

01 3b

looc *?lt
019C HZ
?OZC 11?
ClZC 1Z?

M dO 11V «7lOC 88?
bVI 131HS CC6C Z6?

1C IS 1C90 962
1 3 1CCC 96?
tl dfl 11V tlUO *>62

HOdVdS 0080 t6Z
C 3N f 1JIHS *;060 28Z

11 3b UZC 187
3d01S IdiHS IC6C C6?

60 3d 6CZC 6Z2
b1 ON I 1 191 6 Z 2

fcC ♦ 6CcC ZZ2
♦?l 3b *?lZC 9Z2
60 ♦ 60 2C 9Z2

dafUÜ idlHS U6C CZ <:
1 : ICLC 69?

6C 3»i KZ(B97
ddJlS L31HS U6C Z9?

6C ad 6CZC 992
3bUlS IdiHS 1C6C 992

ZO iö Z0Z(*79?
ddUiS 13JHS IC6C t9?

?C 3d 9UC <:9?
dddlS UIHS KüC 192

0 d OOOC 092
21 dfl 11V ?10C 692

*dVk idlHS 0060 692
♦70 dS *70bC Z92

ddÜlS IJIHS 1C60 99 2
u J OOCO 992

01 dfl 11V 0 100 VSZ
>HVw 1J1HS 0060 292

90 3b 90Z0 292
3oÜlS 1J1HS 1060 192

VO 3d *70ZC 09?
♦70 3d *70Z0 6*7?

3 3'US 131 HS 1C6C 6*7?
tC dd fcCZC Z*?2
9C IS 9C9C 9*72

1 J 1CCC 9*72
11 dil 11V UCC «7*7?

Xd7w 131HS CC6C t*7?
01 df) 11V 0100 2*>?

HÖdViS 0080 1*72
tO dS tORO 0*7?

adüiS IdlHS 1C6C til
ec ♦ 60co 6t?

I 3 ICCC lie
6C IS 6t9C 9t2
tC dS t080 9S2

HVD3b lObC *7t2
*7C IS *7C90 tt2
1C id 1CZC 2t2
tt IS tC9L U2
ZO 3d ZCZO 0£2
tC Jd fcC/C 622

JdJlS IdiHS 1C6C 622
IC X ICH Z22
80 3d 80Z0 9c2
10 IS 1C90 922
CC 3o CCU. «722
20 dd 2 0Z0 f2Z

3HÜ1S LdlHS 1060 III
ZU X zeve 1??
€0 J« iOli: 02?

AIM NDlifi6 düOO djlS A3M iMJlin« 3(100 d31S

STEP CÜOE HUT TON KEY STEP CODE BUTTON KEY

330 0711 RE il
331 C209 f 09
332 0901 SHIFT STORE
333 0711 PE 11
334 0707 RE 07
335 0&09 ST 09
336 0801 RECALL
337 C712 RE 12
338 0409 X 09
339 0801 RECALL
340 0708 RE 03
341 0209 «• 09
342 0901 SHIFT STORE
343 0708 PF 03
344 0701 RE 01
345 0901 SHIFT STORE
346 C805 SP 05
347 0609 ST 09
348 0801 RECALL
349 0710 RE 10
350 0409 < 09
351 0707 RE 07
352 C409 X 09
353 0801 RECALL
354 0706 RE 06
355 G209 ♦ 09
356 C901 SHIFT STORE
357 0706 RF 06
358 0801 RECALL
359 0707 RE 07
360 0609 ST 09
361 0301 RECALL
362 0805 SP 05
363 0608 ST 08
364 0801 RECALL
365 0709 RE 09
366 0408 X 08
367 0707 RE 07
363 0408 X 03
369 0309 - 09
370 0901 SHIFT STORE
371 0707 RE 07
372 U700 RE 00
373 0901 SHIFT STORE
374 0710 RE 10
375 0801 RECALL
376 0712 PE 12
377 0901 SHIFT STORE
378 0709 RE 09
379 07C2 RE 02
380 0600 ST 00
381 COOL E 1
332 0201 f 01
383 0902 SHIFT ALPHA
384 0R06 SIN

385 0600 SEARCH
386 0014 ALL UP 14
387 0801 RECALL
388 0706 RE 06
389 0812 X**2
390 0605 ST 05
391 0801 RECALL
392 0707 RE 07
393 0812 <**2
394 0205 f 05
395 0904 SHIFT J NE 0
396 0800 SEARCH
397 0015 ALL UP 15
398 0801 RECALL
399 0708 RE 08
400 0601 ST 01
401 0801 RECALL
402 0707 RF 07
403 0401 X 01
404 0801 RECALL
405 0711 RE 11
406 0608 ST 08
407 0801 RECALL
408 0706 RE 06
409 0408 X 08
410 0301 - 01
411 0705 RE 05
412 0501 / 01
413 0203 ♦ 03
414 0801 RECALL
415 0711 RE 11
416 0609 ST 09
417 0801 RECALL
418 0707 Rh 07
419 0409 X 09
420 0801 RECALL
421 0708 RE 08
422 0608 ST 08
423 0801 RECALL
424 0706 RE 06
425 0408 X 08
426 0209 f 09
427 0012 CHS
428 0609 ST 09
429 0705 RE 05
430 0509 / 09
431 0901 SHIFT STORE
432 0713 RE 13
433 0204 ♦ 04
434 0801 RECALL
435 0713 RE 13
436 0913 SHIFT ABS
437 0609 ST 09
438 0701 RE 01
439 0913 SHIFT ABS

Figure 14. Final Wang code listing (cont'd).

58

TFP CGDt OUT TON KEY

449 3239 f 39

441 MOO T OC
44? 0001 Q 1
443 0 90 2 SHIFT ALPHA
444 1105 SHF1 r 05
445 3i09 - 09
446 0012 CHS
447 090? SHIFT AL PHA

443 0905 J IF *
449 0800 SEARCH

450 uoo T 30

451 3901 PFCALL
45? 3904 SP 34

453 0 60 9 ST 09

454 300 1 r i
45b 3239 1 39

456 3Q3L SHIFT STOP-F
457 0904 SP 04

458 300 5 F 5
459 0902 SHIFT AL PHA

460 100 2 FIX) 0 2

46 1 030^ - 09

462 3012 CHS

463 3 90 2 SHIFT ALPHA

464 9 30 5 J IF ♦•

465 0 300 SEARCH

466 0012 AL L UP I?
467 0706 RE Ob
469 0004 1 IF 0
*6 9 0900 SF APCH

47J 3133 T 00
471 3901 RECALL
472 330 3 SP 03

47 3 36")9 ST "K
474 3335 F 5

475 3339 - 39

475 3012 CHS

477 0902 SHIFT *\LPH*

478 0 80 5 J IF *■
4 79 030 0 SFA^CH

480 0 009 ALI UP 09

481)00 3 F 3

402 06 10 ST 10

.483 0 800 SFAPCH

494)305 ALI U'5 05
485 0900 SHIFT V1APK

48 6 0100 T 00
437 300 1 r 1
498 36 91 ST 31
439 19)1 SHIFT MAP|<

49 3 9131 T 31
491 3331 J tlC ALL
49? 330? cp 0?
4*3 0633 ST 33
494 0 70 1 RF H

Figure 14. Final

TFP CODE BUTTON KEY

495 03C0 _ 03
49 6 3 301 E I
49 7 32 00 ♦ 00
49P 36 39 ST 09
499 3715 RE 15

500 0?C9 ♦ 09
531 1511 INDIR
50 2 0709 RF 09

5 03 36 0 7 ST 07
534 9700 KF 00
505 06 0 9 ST 0 9
506 0715 Rf. 15
507 320Q +• 09
508 0701 RF 31
509 0608 ST 38
510 0714 RE 14

511 0208 f 03
512 1511 INDIR
51 3 3739 RP 03
514 1511 INDIR
515 3639 ST 09

516 3737 RF 3 7
51 7 1511 INDIR
513 060 9 ST 09
519 3331 PECALL
523 39 3 3 SP 93

521 060 0 ST 00

522 0001 F 1
52 i 3201 + 01
524 090 2 SHIFT ALPHA
5>5 C806 SIN

5?t» 0900 SEARCH

'J2 7 3131 I 01

5 23)70? RE 3?

529 0600 ST 00

530 0 301 RFCALL

531 3715 PF 15

^32 36 3? ST 32

533 3 700 RF 00
534 3901 SHIFT STORF

535 07 15 *E 15

535 0705 RE 06

53 7 39 04 SH IFT J NE 0

5 38 0300 SEARCH
5 39 3011 ALL UP 1 I
54 0 3000 SFARCH

5HI 9132 T 32

54 2 C90 0 SHIFT MARK

543 0015 ALL UP 15
544 0 7 06 RF 06

54 5 09 04 SHIFT J NF 3
54u C909 SEARCH

547 C009 ALL .UP 09

54 3 0901 RECALL

54 9 0704 RE 04

Final Wang code listing (cont'd).

59

SIEP CrOE BUT IHN KEY STEP CODE BUTTON KEY

550 0 50 3 ST 03 605 0104 T 04
551 0801 RECALL 6 36 0105 T 05
552 0705 RF 35 607 0703 RE 03
553 0604 ST 04 608 0901 SHIFT STORE
554 0900 SHIM MARK 609 0714 RE 14
555 0102 T 02 613 0331 E I
556 0106 T Ob 611 3332 - 02
557 0704 HE 04 612 0933 SHIFT MARK
558 0913 SHIFT ABS 513 0104 T 04
557 06 0 9 ST 09 614 0002 E 2
560 0100 T CO 615 0609 ST 39
561 0703 RE 03 616 0714 RE 14
562 09 13 SHIFT ABS 617 0239 ♦ 09
563 0902 SHIFT ALPHA 618 0001 E 1
564 1104 SFFT F 34 619 0608 ST 08
555 0309 - 09 620 0714 RE 14
566 0012 CHS 621 0208 ♦ 08
567 0902 SHIFT ALPHA 622 1511 INDIR
568 0805 J IF ♦ 623 0 70 8 RE 08
5^9 0900 SEARCH 624 0608 ST 08
570 0 10 3 T 03 625 0801 RECALL
571 C703 RE 33 626 0714 RE 14
572 0609 ST 77 627 0408 x 08
573 0209 f 09 623 1511 INDIR
574 090 1 SHIFT STORE 629 0209 ♦ 09
575 0714 RE 14 630 0002 E 2
575 0703 RE 03 631 0631 ST 31
5 77 0812 X**2 632 0900 SHIFT (MARK
578 0605 ST 05 633 0105 T 05
579 0704 RE 04 634 0701 RE 01
5 83 0812 X**2 635 3609 ST 39
581 0205 * 05 636 0031 E 1
592 000? E 2 637 0209 * 09
5*3 0302 - 02 638 3714 RE 14
5 84 0900 SEARCH 639 3239 ♦ 39
5 ab 01 04 T 34 640 0731 RF 31
596 0900 SHIFT MARK 641 0608 ST 08
59 7 0013 ALL UP 13 642 0714 RE 14
588 0103 T 03 643 3238 ♦ 38
539 C801 RECALL 644 1511 INDIR
570 C715 RE 15 645 0708 RF 08
591 0609 ST 09 646 0608 ST 08
592 0301 E I 647 0801 RECALL
593 0309 - 09 648 0714 RE 14
594 0701 SHIFT STORE 649 040 9 X 38
595 07 1*5 PE 15 650 1511 INDIR
b96 0601 RECALL 651 0709 RE 09
597 08 00 S^ 00 652 0208 » 08
•37 8 0609 ST 09 653 0701 RE 01
599 0031 E I 654 0607 ST 37
600 0309 - 09 655 0001 E i
601 09)l SHIFT STORE 656 0337 - 07
632 0933 SP 33 657 0714 RE 14
o33 39")3 SHIFT MARK 658 0207 • 07
604 0103 T 03 659 1511 INDIR

Figure 14. Final Wang code listing (cont'd).

60

T FIP COOF iJUTl™* KirV

ü60 0707 pr 37
661 3607 <T 37
66 2 0 70 5 ^c ^5
66 5 .HO 7 X 07
664 3308 - 08
666 1511 INOP
666 060 9 ST CO
667 0702 Rf OZ
66* 3633 C T 00
669 000 1 E 1
6 70 0 20 I f 01
6 71 090 2 SHIFT ALPHA
672 0806 SIN
673 0300 SFAPCH
674 0106 T 05
676 0900 SHIFT MARK
676 0106 T 06
6 77 08 01 PCCALL
67? 0801 SP 01
679 0609 ^T OQ

680 3711 pr 11
681 0209 f 09
682 0704 pe 04
683 1511 FNDI»
684 0609 51 09
685 0801 PFCALL
686 3331 sp 01
687 0609 ST 09
688 0712 hF 12
639 3209 ♦ 09
690 0703 PE 03
691 1511 INOTR
692 0609 ST 09
693 0831 RECALL
694 0331 SP 01
695 0609 ST 09
696 0331 F I
697 0209 ♦ 09
693 3901 SHIFT STORF
699 0801 SP 01
700 0705 pr 35
701 0904 SHIFT J NF 0
702 0800 SEARCH
733 3137 T 37
704 0704 pr 04
705 0012 CHS
706 060 4 ST 04
707 0105 T 05
708 0800 SEARCH
739 3136 T 36

TFP CUOb rtlj T 1 "rN K»"Y

710 0900 SHIFT MARK
711 0107 T 07
712 0100 T CO
713 0702 PF 02
714 3932 SHIFT ALPHA
715 C3C6 SIN
716 CaOO STARCH
717 3035 ALL UP 05
718 :-: 3 0 SCARCH
719 3008 ALL UP 06
720 0 3 0 0 - n
721 JlOO T 0 0
722 :oo: E 3
72 3 3000 F 0
724 :ooi E 1
725 3031 E I
72 6 0000 E 0
727 0500 / 00
72H 02O0 f 0 0
729 0100 T 00
730 330 0 E 3
731 CO 0 0 E 0
H2 013C T 33
733 ClOO T 00
734 COOO E 0
735 ClOC T 00
736 09M SHIFT END

Figure 14. Final Wang code listing (cont'd).

61

register use must start with a step number divisible by 8, unused steps
preceding the data are replaced with the GO code (0830). Thus, there
could be as many as seven GO statements preceding the large number data
registers (the example in fig. 14 has none). These could be replaced by
a small user-added subroutine or simply ignored.

The final printed output (fig. 15) contains miscellaneous
information that may be useful to a user of the program. The verify
program (VP) number is given for the user to check when the program is
laoded in the machine. Marks and registers used are specified so the
user can determine what is left for other purposes. The total number of
steps (program and registers) is given for the same purpose. If this
number is greater than 1848, the program is too large for the machine.
Finally, the entry points are given to facilitate any editing the user
may wish to perform.

ENTRY POINTS
NAME MARK

MAIN 1000
POLRT 1001

THE VERIFY PROGRAM NUMBER IS 7832

REGISTERS USED

16 - 133

MARKS USED

0 - 107
1030 - 1001

118 REGISTERS WERE USED

1681 STEPS OF TOTAL STORAGE WERE USED

Figure 15. Entry point and register information.

62

The punched cards provided as output by the compiler are put into a
local program to punch the actual Wang cards read by the card reader
(sect. 2). The first card shows the hexadecimal number of cards
following, and each succeeding card contains 40 steps at two columns per
step in hexadecimal representation. (The code 0512 is written as 5C;
i.e., high-order and low-order code each takes a column.)

To use the program once the code is in the machine, it is necessary
to know how to control the I/O flow. Hence, it is wise to write the
instructions on the back of the final Wang input cards. For this
program, such instructions would probably look like the following:

M
Purpose: To find roots of real polynomial X] c-+iX ' ° < M - 25

i=0

(Translation of POLRT) (Explanation)

VP - 7719—load only at step 0000

Put Printer ON.

1. Key fO. Entry point for MAIN

2. 4 appears in display. Enter degree
M of polynomial and key GO (printed 4 is index of M (fig. 6)
M)

3. 2.i appears in display. Enter C. 2 is index of XCOF
and key GO (printed C). 1 (fig. 6)

After last coefficient is entered, roots are computed and
printed (X real, I imaginary), unless they are not found.
Then, error code is printed (labelled E)

E = 1 means M is less than 1. E=2 should never arise
since we have made

E = 2 means M is greater than 36. provision for M < 26

E = 3 means unable to determine root with 500 iterations on 5
starting values.

E = 4 means C: =0.
M+l

Other information could be indicated if it might be useful (we use
the symbol "+" to mean "is stored in register") :

63

M + 13

Coefficients ■*■ 16 to 40

Real part of roots -*■ 66 to 89

Corresponding imaginary part of roots ■+ 90 to 113

Marks used: f00-l, 0000-T07

Total steps used: 1680 (736 for code at low end and 944 at high
end)

With these instructions, only the source and object listings need be
saved if trouble can be anticipated.

It is hoped that the detail of this example helps clarify how to use
the compiler. Experiments will probably clarify the use further and
suggest other techniques for improvements. The authors would appreciate
comments or suggestions for this purpose.

LITERATURE CITED

(1) H. Bloom and A. Hausner, FORTRAN IV Compiler for the Wang 520
Calculator, Harry Diamond Laboratories TM-73-15 (July 1973).

(2) D. Gries, Compiler Construction for Digital Computers, New York:
John Wiley and Sons (1971).

(3) F. R. A. Hopgood, Compiling Techniques, New York: American Elsevier
Publishing Co. (1969).

(4) R. Rustin, ed., Design and Optimization of Compilers, Englewood
Cliffs, NJ: Prentice Hall, Inc. (1972).

(5) System/360 Scientific Subroutine Package, Version III, Programmer's
Manual, Program Number 360A-CM-03X, ed. GH20-0205-4, IBM
Corporation, White Plains, NY (August 1970), 181-183.

64

APPENDIX A.—ADAPTABILITY OF SYSTEM TO OTHER COMPUTERS

The compiler system has been exclusively written in FORTRAN IV and
is independent of the word length (32 bits) or character code (EBCDIC),
except for the following cases:

(a) FUNCTION DIG—This function takes a digit character code (left
justified) and right justifies as numerical digit.

(b) FUNCTION NUMBER—This function is the opposite of DIG.

The program takes approximately 280k bytes of core on the
IBM 370/195. In addition, two routines reference a direct access file
(logical unit 1) that contains records 466 words in length.
Approximately 130 records can be stored on the disk. The two routines
are listed below:

(a) GET (A, I, O)—Gets array A from the Ith record on the file.

(b) PUT (A, I, 0)—Puts array A into the Ith record on the file.

The routine BIN takes the loader codes (n Wang steps) and punches
out an object deck containing 40 steps to a card, each step represented
as a two-digit hexadecimal code. A leader card gives the count of the
number of cards (also in hexadecimal) in the object deck. This object
deck is then converted into the Wang card form through a conversion
routine written for the IBM 1130. This routine could be altered to
produce the Wang object deck directly.

A listing of the compiler is available upon request. The system
contains approximately 11,000 cards, including 4000 comment cards. The
source code may be obtained by sending a tape to the authors. The code
will be placed on a nine-track tape at 800 BPI on one file. Also
available upon request is a listing of the IBM 1130 program for
converting the object decks.

In converting the system to a smaller computer, it will be necessary
to overlay the system. Fortunately, the system is divided into six
autonomous subsystems (sect. 3 of the main body of the report) with the
important tables being passed through labelled commons or disk files.

65

DISTRIBUTION

DEFENSE DOCUMENTATION CENTER
CAMERON STATION, BUILDING 5
ALEXANDRIA, VA 22314
ATTN DDC-TCA (12 COPIES)

OFC, CHIEF OF RESEARCH & DEVELOPMENT
USA RSCH & DEV GROUP (EUROPE)
BOX 15
FPR NEW YORK 09510
ATTN LTC EDWARD E. CHICK

CHIEF, MATERIALS BRANCH

COMMANDER
US ARMY MATERIEL DEVELOPMENT
& READINESS COMMAND

5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333
ATTN DRCRD, RES, DEV, & ENGR

DIRECTORATE
ATTN DRCRD-T, RESEARCH DIV

USA ELECTRONICS COMMAND (CONT'D)
ATTN DRSEL-WL, ELECTRONIC WARFARE LAB
ATTN DRSEL-GG, COMPUTER-AIDED DESIGN

S ENGINEERING OFFICE
ATTN DRSEL-GG, TECHNICAL LIBRARY

MOUNTAIN VIEW OFFICE (DRSEL-WL-RU)
ELECTRONIC WARFARE LABORATORY
P.O. BOX 205
MOUNTAIN VIEW, CA 94040

COMMANDER
USA MISSILE COMMAND
REDSTONE ARSENAL, AL 35809

ATTN DRSMI-RBLD, CHIEF DOC SECTION

COMMANDER

USA MOBILITY EQUIPMENT R&D CENTER
FORT BELVOIR, VA 22060
ATTN SMEFB-W, TECHNICAL LIBRARY

COMMANDER
USA ARMAMENT COMMAND
ROCK ISLAND, IL 61201

ATTN DRSAR-ASF, FUZE DIV

ATTN DRSAR-RDF, SYS DEV DIV - FUZES

COMMANDER
USA MISSILE & MUNITIONS CENTER

& SCHOOL
REDSTONE ARSENAL, AL 35809

ATTN ATSK-CTD-F

DIRECTOR
DEFENSE NUCLEAR AGENCY
WASHINGTON, DC 20305
ATTN APTL, DASA TECH LIBRARY

DIRECTOR OF DEFENSE RES AND
ENGINEERING

WASHINGTON, DC 20301
ATTN TECHNICAL LIBRARY

DIRECTOR
NATIONAL SECURITY AGENCY
FORT GEORGE G. MEADE, MD 20755
ATTN T. A. PRUGH

COMMANDER
US ARMY RESEARCH OFFICE (DURHAM)
P.O. BOX 12211
RESEARCH TRIANGLE PARK, NC 27709
ATTN CRD-AA-IP

COMMANDER
USA ELECTRONICS COMMAND
FORT MONMOUTH, NJ 07703
ATTN DRSEL-CE, COMMUNICATIONS-

ELECTRONICS INTEGRATION OFC
ATTN DRSEL-TL, ELECTRONICS TECHNOLOGY

& DEVICES LABORATORY

COMMANDER
EDGEWOOD ARSENAL
EDGEWOOD ARSENAL, MD 21010
ATTN SMUEA-TS-L, TECH LIBRARY

COMMANDER
FRANKFORD ARSENAL
BRIDGE & TACONY STREETS
PHILADELPHIA, PA 19137
ATTN K1000, TECHNICAL LIBRARY

COMMANDER
PICATINNY ARSENAL
DOVER, NJ 07801
ATTN SARPA-TS-T-S, TECHNICAL LIBRARY

COMMANDER
USA ABERDEEN PROVING GROUND
ABERDEEN PROVING GROUND, MD 21005
ATTN STEAP-TL, TECH LIBRARY, BLDG 305

COMMANDER
USA ELECTRONICS PROVING GROUND
FORT HUACHUCA, AZ 85613
ATTN STEEP-PA-I, TECH INFO CENTER

COMMANDER
YUMA PROVING GROUND
YUMA, AZ 85364
ATTN STEYP-MTL, TEST ENGINEERING DIV

COMMANDER
USA WEAPONS COMMAND, HA
ROCK ISLAND, IL 61201
ATTN SWERR-PL, TECHNICAL LIBRARY

CHIEF OF NAVAL OPERATIONS
NAVY DEPARTMENT
WASHINGTON, DC 20350
ATTN NOP-098, DIR, OFC OF RES, DEV,

TEST, AND EVALUATION
ATTN NOP-985F, WEAPONS TECH BR

67

DISTRIBUTION (CONT'D)

COMMANDER
NAVAL ELECTRONICS LABORATORY CENTER
SAN DIEGO, CA 92152
ATTN TECHNICAL LIBRARY

COMMANDER
PACIFIC MISSILE RANGE
NAVAL MISSILE CENTER
POINT MUGU, CA 93042
ATTN CODE 5632, TECHNICAL LIBRARY

COMMANDER
ARMAMENT DEVELOPMENT AND TEST CENTER
EGLIN AIR FORCE BASE, FL 32542
ATTN ADTC(DLOSL), TECH LIBRARY

COMMANDER
AERONAUTICAL SYSTEMS DIVISION, AFSC
WRIGHT-PATTERSON AFB, OH 45433
ATTN ASD/SD, DEPUTY FOR SYSTEMS
ATTN TECHNICAL LIBRARY

COMMANDER
NAVAL SURFACE WEAPONS CENTER
WHITE OAK, MD 20910
ATTN L-315, TECH LIBRARY

COMMANDER
NAVAL SEA SYSTEMS COMMAND
2521 JEFFERSON DAVIS HIGHWAY
ARLINGTON, VA 20360

ATTN NSEA-0632, LIBRARY BRANCH

DIRECTOR
NAVAL RESEARCH LABORATORY
WASHINGTON, DC 20390
ATTN 2620, TECHNICAL LIBRARY BR

COMMANDER
NAVAL SHIP SYSTEMS COMMAND, HQ
25 31 JEFFERSON DAVIS HIGHWAY
WASHINGTON, DC 20360

ATTN NSHP-2052, TECH LIBRARY BR

COMMANDER
HQ SPACE AND MISSILE SYSTEMS ORGANIZATION
P. 0. 96960 WORLDWAYS POSTAL CENTER
LOS ANGELES, CA 90009
ATTN SN, DEP FOR SPACE COMM SYS
ATTN SYT, COMPUTER TECHNOLOGY OFC

COMMANDER
AF SPECIAL WEAPONS CENTER, AFSC
KIRTLAND AFB, NM 87117
ATTN SWTSX, SURVIVABILITY/

VULNERABILITY BRANCH

HQ, SAAMA, SANEPA
KELLEY AFB, TX 78241
ATTN DIR OF MATERIEL MANAGEMENT

US ENERGY RESEARCH & DEVELOPMENT
ADMINISTRATION

WASHINGTON, DC 20545
ATTN TECHNICAL LIBRARY

COMMANDER
NAVAL WEAPONS CENTER
CHINA LAKE, CA 93555
ATTN CODE 753, LIBRARY DIV

DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
WASHINGTON, DC 20234
ATTN LIBRARY

COMMANDER
NAVAL SURFACE WEAPONS CENTER
DAHLGREN, VA 22448
ATTN TECHNICAL LIBRARY

LIBRARY OF CONGRESS
SCIENCE & TECHNOLOGY DIVISION
WASHINGTON, DC 20540
ATTN HEAD, LIB OPNS,

US AIR FORCE, HEADQUARTERS
DCS, RESEARCH & DEVELOPMENT
WASHINGTON, DC 20330

NASA AMES RESEARCH CENTER
MOFFETT FIELD, CA 94035
ATTN S. J. DE FRANCE, DIRECTOR

COMMANDER
HQ AIR FORCE SYSTEMS COMMAND
ANDREWS AFB
WASHINGTON, DC 20331
ATTN DAPL, TECHNICAL LIBRARY
ATTN DPSL, TECH LIBRARY

COMMANDER
AF CAMBRIDGE RESEARCH
LABORATORIES, AFSC

L. G. HANSCOM FIELD
BEDFORD, MA 01730
ATTN E. CZERLINSKY

NASA GEORGE C. MARSHALL SPACE FLIGHT CTR
HUNTSVILLE, AL 35812
ATTN M-G & C-NS

NASA GODDARD SPACE FLIGHT CENTER
GREENBELT, MD 20771
ATTN LIBRARY

NASA LEWIS RESEARCH CENTER
21000 BROOKPARK ROAD
CLEVELAND, OH 44135
ATTN LIBRARIAN

68

DISTRIBUTION (CONT'D)

COMMANDER
ROME AIR DEVELOPMENT CENTER, AFSC
GRIFFISS AFB, NY 13440
ATTN LTFf COMPUTER ENGINEERING BR
ATTN TECHNICAL LIBRARY

NASA SCIENTIFIC & TECH INFO FACILITY
P. 0. BOX 33
COLLEGE PARK, MD 20740
ATTN ACQUISITIONS BR (S-AK/DL)

NATIONAL OCEANIC & ATMOSPHERIC ADM
ENVIRONMENTAL RESEARCH LABORATORIES
BOULDER, CO 80302
ATTN LIBRARY, R-51, TECH REPORTS

CALIFORNIA INSTITUTE OF TECHNOLOGY
JET PROPULSION LABORATORY
4800 OAK GROVE DRIVE
PASADENA, CA 91103
ATTN TDS, LIBRARY MANAGER

TYMSHARE INC.
1911 NORTH FORT MYER DRIVE
ARLINGTON, VA 22209
ATTN CARLYLE REEDER

WANG LABORATORIES
8360 NORTH STREET
TEWKSBURY, MA 01876
ATTN JASON TAYLOR
ATTN HAROLD KOPLOW
ATTN ROY KOLK

ILLINOIS STATE WATER SURVEY
BOX 232
URBANA, IL 61801

ATTN MARIE F. BURNS, LIBRARIAN

DIGITAL ACOUSTICS, INC.
1415 E. McFADDEN, SUITE F
SANTA ANA, CA 92705
ATTN MISS PAMELA HURST

UNIVERSITY OF CALIFORNIA
LAWRENCE RADIATION LABORATORY
BERKLEY, CA 94720
ATTN LIBRARY, BUILDING 50, RM 134

COMMANDER
AFATL/DLRD
EGLIN AFB, FL 32542
ATTN MR. COLLINS

UNIVERSITY OF CALIFORNIA
LOS ALAMOS SCIENTIFIC LABORATORY
P.O. BOX 1663
LOS ALAMOS, NM 87544
ATTN R. GAWLER

UNIVERSITY OF FLORIDA
GAINSEVILLE, FL 32603
ATTN R. C. JOHNSON, JR.
ATTN R. D. WALKER

UNIVERSITY OF ILLINOIS
DEPARTMENT OF MATHEMATICS
URBANA, IL 61801
ATTN LAWRENCE A WHITE

UNIVERSITY OF MARYLAND
COMPUTER SCIENCE DEPARTMENT
COLLEGE PARK, MD 20741
ATTN DR. YAOHAN CHU

UNIVERSITY OF MICHIGAN
INFRARED INFORMATION
& ANALYSIS CENTER

ANN ARBOR, MI 48106
ATTN WILLIAM L. WOLFE

BELL TELEPHONE LABORATORIES
WHIPPANY ROAD
WHIPPANY, NJ 07981
ATTN LIBRARIAN

NATIONAL INSTITUTES OF HEALTH
BETHESDA, MD 20014
ATTN DR. C. PATLAK, BLDG 13, RM 1D24

MGR SYSTEMS
1510 RICHARDS AVENUE
WILLIAMSPORT, PA 17701
ATTN MR. BURNETT TYSON

CHIEF ENGR COM-PU-TOR
76 OX YOKE DRIVE
WETHERSFIELD, CT 06109
ATTN WM H. SMYERS, JR.

THE JOHNS HOPKINS UNIVERSITY
DEPARTMENT OF CHEMISTRY
BALTIMORE, MD 21218
ATTN DR. JOYCE J. KAUFMAN
ATTN MR. HARRY J. T. PRESTON

NAVAL SECURITY ENGINEERING FACILITY
3801 NEBRASKA AVENUE
WASHINGTON, DC 20390
ATTN MR. JOHN H. BICKFORD, CODE 0245

KINNEY SHOE CORPORATION
16TH FLOOR
233 BROADWAY
NEW YORK, NY 10007
ATTN MR. GEORGE J. MICHELSON

SPEC CONS TO THE PRES

69

DISTRIBUTION (CONT'D)

ICHTHYOLOGICAL ASSOCIATES, INC.
SCHUYLKILL RIVER ECOLOGICAL STUDY
FRICKS LOCK ROAD, RD 1
POTTSTOWN, PA 19464
ATTN MR. KEN LITE

BLECK ENGINERRING CO., INC.
1321 GLEN ROCK AVENUE
WAUKEGAN, IL 60085
ATTN DONNA L. BLECK

CALCULATOR CONSULTANT
45-3A MT. PLEASANT VILLAGE
MORRIS PLAINS, NJ 07950
ATTN MR. NEAL H. KUHN

US ENVIRONMENTAL PROTECTION AGENCY
P.O. BOX 5036
ROCHESTER, NY 14627
ATTN MR. DONALD J. CASEY

CHIEF, IFYGL BRANCH

DIRECTOR OF LABORATORIES
HOLY CROSS HOSPITAL
2701 WEST 68TH ST
AT CALIFORNIA AVENUE

CHICAGO, IL 60629
ATTN A. M. RING, MD

J. J. GARCIA & ASSOCIATES, INC.
11039 N. E., 6TH AVENUE
MIAMI, FL 33161
ATTN EMRIQUE ALVAREZ

LINE COUPLING EQUIPMENT ENGINEERING
GENERAL ELECTRIC COMPANY
MOUNTAIN VIEW ROAD
LYNCHBURG, VA 24502
ATTN MR. D. B. BRAH, MANAGER

OREGON STATE UNIVERSITY
SCHOOL OF OCEANOGRAPHY
CORVALLIS, OR 97331
ATTN DR. LOUIS I. GORDON

ASSISTANT PROFESSOR

CARTER PRODUCTS
RESEARCH LABORATORY
CRANBURY, NJ 08512
ATTN W. M. WOODING

DIRECTOR, TECHNICAL SERVICES

PICKARD & ANDERSON ENGINEERS
69 SOUTH ST
AUBURN, NJ 13021
ATTN WILLIAM C. ANDERSON, P.E.

NORTHEASTERN PRODUCTS COMPANY
3500 S. CLINTON AVENUE
SOUTH PLAINFIELD, NJ 07080
ATTN RICHARD D. GUIDO

MANAGER QUALITY CONTROL

COMMANDANT
USA FIELD ARTILLARY SCHOOL
FORT SILL, OK 73503
ATTN BILL MILLSPAUGH

ATSFCTD/SD

ST. MARY'S UNIVERSITY
2 700 CINCINNATI AVENUE
SAN ANTONIO, TX 28284

ATTN DR. TOM MOTE

ETHYL CORPORATION
FUNDAMENTAL STUDIES DEPARTMENT
TERRE HAUTE, IN 47808
ATTN MR. CHARLES FURLAND

BOEING AEROSPACE COMPANY
P.O. BOX 3999
SEATTLE, WA 98124

ATTN MR. MALCOLM MATHEWS
MS 8C-41

PENNWALT CORPORATION
TECHNOLOGICAL CENTER
900 FIRST AVENUE
KING OF PRUSSIA, PA 19406
ATTN DR. J. E. DOHANY

MR. L. H. CHAMBERLIN
10510 SUNNYBROOK LANE, SW
TACOMA, WA 98498

HARRY
ATTN

ATTN

ATTN
ATTN
ATTN
ATTN
ATTN
ATTN
ATTN
ATTN
ATTN
ATTN
ATTN
ATTN
ATTN
ATTN

DIAMOND LABORATORIES
MCGREGOR, THOMAS, COL, COMMANDING
OFFICER/FLYER, I.N./LANDIS, P.E./
SOMMER, H./CONRAD, E.E.
CARTER, W.W., DR., ACTING TECHNICAL
DIRECTOR/MARCUS, S.M.
KIMMEL, S., PIO
CHIEF, 0021
CHIEF, 0022
CHIEF, LAB 100
CHIEF, LAB 200
CHIEF, LAB 300
CHIEF, LAB 400
CHIEF, LAB 500
CHIEF, LAB 600
CHIEF, DIV 700
CHIEF, DIV 800
CHIEF, LAB 900
CHIEF, LAB 1000
RECORD COPY, BR 041

70

DISTRIBUTION (CONT'D)

HARRY DIAMOND LABORATORIES (CONT'D)

ATTN HDL LIBRARY (3 COPIES)
ATTN CHAIRMAN, EDITORIAL COMMITTEE
ATTN CHIEF, 047
ATTN TECH REPORTS, 013
ATTN PATENT LAW BRANCH, 071
ATTN MCLAUGHLIN, P.W., 741
ATTN CLASEN, S. M., 120
ATTN CHIEF, 310
ATTN MANION, F. M., 310
ATTN DRZEWIECKI, T., 310
ATTN SPYROUPOULOS, C, 310
ATTN CHIEF, 340
ATTN GOTO, J., 340
ATTN MON, G., 340
ATTN INGERSOLL, P., 430
ATTN OVERMAN, D. L., 420
ATTN BUTLER, R., 0025
ATTN HINE, R., 0025
ATTN JOHNSON, P., 610
ATTN RAVILIOUS, C, 310
ATTN ROSEN, R., 800
ATTN WICKLUND, J., 280
ATTN MARROLETTI, J., 0025
ATTN MATHEWS, H. J., 0025
ATTN BLOOM, H. (10 COPIES)
ATTN HAUSNER, A. (10 COPIES)

71

DEPARTMENT OF THE ARMY
HARRY DIAMOND LABORATORIES
2800 POWDER MILL RD
ADELPHI. MD 20783

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE $300

AN EQUAL OPPORTUNITY EMPLOYER POSTAGE AND FEES PAID
DEPARTMENT OF THE ARMY

DOD 314

THIRD CLASS

s&^:**%

%
%>

